hierarchicalFWER {MLGL} | R Documentation |
Hierarchical testing with FWER control
Description
Apply hierarchical test for each hierarchy, and test external variables for FWER control at level alpha
Usage
hierarchicalFWER(
X,
y,
group,
var,
test = partialFtest,
Shaffer = FALSE,
addRoot = FALSE
)
Arguments
X |
original data |
y |
associated response |
group |
vector with index of groups. group[i] contains the index of the group of the variable var[i]. |
var |
vector with the variables contained in each group. group[i] contains the index of the group of the variable var[i]. |
test |
function for testing the nullity of a group of coefficients in linear regression.
The function has 3 arguments: |
Shaffer |
boolean, if TRUE, a Shaffer correction is performed |
addRoot |
If TRUE, add a common root containing all the groups |
Details
Version of the hierarchical testing procedure of Meinshausen for MLGL output. You can use th selFWER function to select groups at a desired level alpha
Value
a list containing:
- pvalues
pvalues of the different test (without correction)
- adjPvalues
adjusted pvalues
- groupId
Index of the group
- hierMatrix
Matrix describing the hierarchical tree.
References
Meinshausen, Nicolai. "Hierarchical Testing of Variable Importance." Biometrika 95.2 (2008): 265-78.
See Also
Examples
set.seed(42)
X <- simuBlockGaussian(50, 12, 5, 0.7)
y <- X[, c(2, 7, 12)] %*% c(2, 2, -2) + rnorm(50, 0, 0.5)
res <- MLGL(X, y)
test <- hierarchicalFWER(X, y, res$group[[20]], res$var[[20]])