hierarchicalFDR {MLGL} | R Documentation |
Hierarchical testing with FDR control
Description
Apply hierarchical test for each hierarchy, and test external variables for FDR control at level alpha
Usage
hierarchicalFDR(X, y, group, var, test = partialFtest, addRoot = FALSE)
Arguments
X |
original data |
y |
associated response |
group |
vector with index of groups. group[i] contains the index of the group of the variable var[i]. |
var |
vector with the variables contained in each group. group[i] contains the index of the group of the variable var[i]. |
test |
function for testing the nullity of a group of coefficients in linear regression.
The function has 3 arguments: |
addRoot |
If TRUE, add a common root containing all the groups |
Details
Version of the hierarchical testing procedure of Yekutieli for MLGL output. You can use th selFDR function to select groups at a desired level alpha.
Value
a list containing:
- pvalues
pvalues of the different test (without correction)
- adjPvalues
adjusted pvalues
- groupId
Index of the group
- hierMatrix
Matrix describing the hierarchical tree.
References
Yekutieli, Daniel. "Hierarchical False Discovery Rate-Controlling Methodology." Journal of the American Statistical Association 103.481 (2008): 309-16.
See Also
Examples
set.seed(42)
X <- simuBlockGaussian(50, 12, 5, 0.7)
y <- X[, c(2, 7, 12)] %*% c(2, 2, -2) + rnorm(50, 0, 0.5)
res <- MLGL(X, y)
test <- hierarchicalFDR(X, y, res$group[[20]], res$var[[20]])