gof {MLEce} | R Documentation |
Goodness-of-fit test for the efficient closed-form estimators
Description
Goodness-of-fit test for the efficient closed-form estimators
Usage
gof(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'gof'
print(x, digits = max(3, getOption("digits") - 3), ...)
Arguments
x |
an object of class "MLEce" made by the function |
digits |
a numeric number of significant digits. |
... |
additional arguments affecting the goodness-of-fit test. |
Details
Generalized Cramer-von Mises test (chiu and Liu, 2009) is applied to do the goodness-of-fit test for multivariate distributions. For the bivariate gamma and Dirichlet distributions, the L2-symmetric discrepancy (SD2) statistics are applied. But the L2-centred discrepancy (CD2) statistics are applied in the bivariate Weibull distribution.
References
chiu, S. N. and Liu, K. I. (2009) Generalized Cramer-Von Mises goodness-of-fit tests for multivariate distributions. Computational Statistics and Data Analysis, 53, 3817-3834.
Examples
data_BiGam <- rBiGam(100, c(1,4,5))
res_BiGam <- MLEce(data_BiGam, "BiGam")
gof(res_BiGam)
datt = rBiWei(n=50, c(4,3,3,4,0.6))
est_BiWei <-MLEce(datt, "BiWei")
gof(est_BiWei)
data_Diri <- LaplacesDemon::rdirichlet(n=60, c(3,1,2,4))
est_Diri <- MLEce(data_Diri, "Dirichlet")
gof(est_Diri)
[Package MLEce version 2.1.0 Index]