| simPlot {MKmisc} | R Documentation | 
Plot of a similarity matrix.
Description
Plot of similarity matrix.
Usage
simPlot(x, col, minVal, labels = FALSE, lab.both.axes = FALSE, 
          labcols = "black", title = "", cex.title = 1.2, 
          protocol = FALSE, cex.axis = 0.8, 
          cex.axis.bar = 1, signifBar = 2, ...)
Arguments
| x | quadratic data matrix. | 
| col |  colors palette for image. If missing, the  | 
| minVal |  numeric, minimum value which is display by a color; used to adjust  | 
| labels |  vector of character strings to be placed at the tickpoints,
labels for the columns of  | 
| lab.both.axes | logical, display labels on both axes | 
| labcols |  colors to be used for the labels of the columns of  | 
| title | character string, overall title for the plot. | 
| cex.title |  A numerical value giving the amount by which plotting text
and symbols should be magnified relative to the default;
cf.  | 
| protocol | logical, display color bar without numbers | 
| cex.axis |  The magnification to be used for axis annotation relative to the 
current setting of 'cex'; cf.  | 
| cex.axis.bar |  The magnification to be used for axis annotation of the color 
bar relative to the current setting of 'cex'; cf. 
 | 
| signifBar | integer indicating the precision to be used for the bar. | 
| ... |  graphical parameters may also be supplied as arguments to the
function (see  | 
Details
This functions generates a so called similarity matrix.
If min(x) is smaller than minVal, the colors in col are 
adjusted such that the minimum value which is color coded is equal to minVal.
Value
invisible()
Note
The function is a slight modification of function corPlot of package MKmisc.
Author(s)
Matthias Kohl Matthias.Kohl@stamats.de
References
Sandrine Dudoit, Yee Hwa (Jean) Yang, Benjamin Milo Bolstad and with 
contributions from Natalie Thorne, Ingrid Loennstedt and Jessica Mar.
sma: Statistical Microarray Analysis.
http://www.stat.berkeley.edu/users/terry/zarray/Software/smacode.html
Examples
## only a dummy example
M <- matrix(rnorm(1000), ncol = 20)
colnames(M) <- paste("Sample", 1:20)
M.cor <- cor(M)
simPlot(M.cor, minVal = min(M.cor))
simPlot(M.cor, minVal = min(M.cor), lab.both.axes = TRUE)
simPlot(M.cor, minVal = min(M.cor), protocol = TRUE)
simPlot(M.cor, minVal = min(M.cor), signifBar = 1)