predValues {MKmisc} | R Documentation |
Compute PPV and NPV.
Description
The function computes the positive (PPV) and negative predictive value (NPV) given sensitivity, specificity and prevalence (pre-test probability).
Usage
predValues(sens, spec, prev)
Arguments
sens |
numeric vector: sensitivities. |
spec |
numeric vector: specificities. |
prev |
numeric vector: prevalence. |
Details
The function computes the positive (PPV) and negative predictive value (NPV) given sensitivity, specificity and prevalence (pre-test probability).
It's a simple application of the Bayes formula.
One can also specify vectors of length larger than 1 for sensitivity and specificity.
Value
Vector or matrix with PPV and NPV.
Author(s)
Matthias Kohl Matthias.Kohl@stamats.de
Examples
## Example: HIV test
## 1. ELISA screening test (4th generation)
predValues(sens = 0.999, spec = 0.998, prev = 0.001)
## 2. Western-Plot confirmation test
predValues(sens = 0.998, spec = 0.999996, prev = 1/3)
## Example: connection between sensitivity, specificity and PPV
sens <- seq(0.6, 0.99, by = 0.01)
spec <- seq(0.6, 0.99, by = 0.01)
ppv <- function(sens, spec, pre) predValues(sens, spec, pre)[,1]
res <- outer(sens, spec, ppv, pre = 0.1)
image(sens, spec, res, col = terrain.colors(256), main = "PPV for prevalence = 10%",
xlim = c(0.59, 1), ylim = c(0.59, 1))
contour(sens, spec, res, add = TRUE)
[Package MKmisc version 1.9 Index]