| power.nb.test {MKmisc} | R Documentation |
Power calculation for comparing two negative binomial rates
Description
Compute sample size or power for comparing two negative binomial rates.
Usage
power.nb.test(n = NULL, mu0, mu1, RR, duration = 1, theta, ssize.ratio = 1,
sig.level = 0.05, power = NULL, alternative = c("two.sided", "one.sided"),
approach = 3)
Arguments
n |
Sample size for group 0 (control group). |
mu0 |
expected rate of events per time unit for group 0 |
mu1 |
expected rate of events per time unit for group 1 |
RR |
ratio of expected event rates: mu1/mu0 |
duration |
(average) treatment duration |
theta |
theta parameter of negative binomial distribution; see |
ssize.ratio |
ratio of sample sizes: n/n1 where n1 is sample size of group 1 |
sig.level |
Significance level (Type I error probability) |
power |
Power of test (1 minus Type II error probability) |
alternative |
one- or two-sided test |
approach |
1, 2, or 3; see Zhu and Lakkis (2014). |
Details
Exactly one of the parameters n and power must be passed as
NULL, and that parameter is determined from the other.
The computations are based on the formulas given in Zhu and Lakkis (2014).
Please be careful, as we are using a slightly different parametrization
(theta = 1/k).
Zhu and Lakkis (2014) based on their simulation studies recommend to use their approach 2 or 3.
Value
Object of class "power.htest", a list of the arguments
(including the computed one) augmented with a note element.
Author(s)
Matthias Kohl Matthias.Kohl@stamats.de
References
H. Zhu and H. Lakkis (2014). Sample size calculation for comparing two negative binomial rates. Statistics in Medicine, 33:376-387.
See Also
Examples
## examples from Table I in Zhu and Lakkis (2014)
## theta = 1/k, RR = rr, mu0 = r0, duration = mu_t
power.nb.test(mu0 = 0.8, RR = 0.85, theta = 1/0.4, duration = 0.75, power = 0.8, approach = 1)
power.nb.test(mu0 = 0.8, RR = 0.85, theta = 1/0.4, duration = 0.75, power = 0.8, approach = 2)
power.nb.test(mu0 = 0.8, RR = 0.85, theta = 1/0.4, duration = 0.75, power = 0.8, approach = 3)
power.nb.test(mu0 = 1.4, RR = 1.15, theta = 1/1.5, duration = 0.75, power = 0.8, approach = 1)
power.nb.test(mu0 = 1.4, RR = 1.15, theta = 1/1.5, duration = 0.75, power = 0.8, approach = 2)
power.nb.test(mu0 = 1.4, RR = 1.15, theta = 1/1.5, duration = 0.75, power = 0.8, approach = 3)
## examples from Table II in Zhu and Lakkis (2014) - seem to be total sample sizes
## can reproduce the results with mu_t = 1.0 (not 0.7!)
power.nb.test(mu0 = 2.0, RR = 0.5, theta = 1, duration = 1.0, ssize.ratio = 1,
power = 0.8, approach = 1)
power.nb.test(mu0 = 2.0, RR = 0.5, theta = 1, duration = 1.0, ssize.ratio = 1,
power = 0.8, approach = 2)
power.nb.test(mu0 = 2.0, RR = 0.5, theta = 1, duration = 1.0, ssize.ratio = 1,
power = 0.8, approach = 3)
power.nb.test(mu0 = 10.0, RR = 1.5, theta = 1/5, duration = 1.0, ssize.ratio = 3/2,
power = 0.8, approach = 1)
power.nb.test(mu0 = 10.0, RR = 1.5, theta = 1/5, duration = 1.0, ssize.ratio = 3/2,
power = 0.8, approach = 2)
power.nb.test(mu0 = 10.0, RR = 1.5, theta = 1/5, duration = 1.0, ssize.ratio = 3/2,
power = 0.8, approach = 3)
## examples from Table III in Zhu and Lakkis (2014)
power.nb.test(mu0 = 5.0, RR = 2.0, theta = 1/0.5, duration = 1, power = 0.8, approach = 1)
power.nb.test(mu0 = 5.0, RR = 2.0, theta = 1/0.5, duration = 1, power = 0.8, approach = 2)
power.nb.test(mu0 = 5.0, RR = 2.0, theta = 1/0.5, duration = 1, power = 0.8, approach = 3)
## examples from Table IV in Zhu and Lakkis (2014)
power.nb.test(mu0 = 5.9/3, RR = 0.4, theta = 0.49, duration = 3, power = 0.9, approach = 1)
power.nb.test(mu0 = 5.9/3, RR = 0.4, theta = 0.49, duration = 3, power = 0.9, approach = 2)
power.nb.test(mu0 = 5.9/3, RR = 0.4, theta = 0.49, duration = 3, power = 0.9, approach = 3)
power.nb.test(mu0 = 13/6, RR = 0.2, theta = 0.52, duration = 6, power = 0.9, approach = 1)
power.nb.test(mu0 = 13/6, RR = 0.2, theta = 0.52, duration = 6, power = 0.9, approach = 2)
power.nb.test(mu0 = 13/6, RR = 0.2, theta = 0.52, duration = 6, power = 0.9, approach = 3)
## see Section 5 of Zhu and Lakkis (2014)
power.nb.test(mu0 = 0.66, RR = 0.8, theta = 1/0.8, duration = 0.9, power = 0.9)