mod.t.test {MKmisc} | R Documentation |
Moderated t-Test
Description
Performs moderated t-tests based on Bioconductor package limma.
Usage
mod.t.test(x, group = NULL, paired = FALSE, adjust.method = "BH",
sort.by = "none")
Arguments
x |
a (non-empty) numeric matrix of data values. |
group |
an optional factor representing the groups. |
paired |
a logical indicating whether you want a paired test. |
adjust.method |
see |
sort.by |
see |
, where "logFC"
corresponds to difference in means.
Details
The function uses Bioconductor package limma to compute moderated t-tests.
For more details we refer to ebayes
.
Value
A data.frame with the results.
References
B. Phipson, S. Lee, I.J. Majewski, W.S. Alexander, G.H. Smyth (2016). Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Annals of Applied Statistics 10(2), 946-963.
See Also
Examples
## One-sample test
X <- matrix(rnorm(10*20, mean = 1), nrow = 10, ncol = 20)
mod.t.test(X)
## corresponds to
library(limma)
design <- matrix(1, nrow = ncol(X), ncol = 1)
colnames(design) <- "A"
fit1 <- lmFit(X, design)
fit2 <- eBayes(fit1)
topTable(fit2, coef = 1, number = Inf, confint = TRUE, sort.by = "none")[,-4]
## Two-sample test
set.seed(123)
X <- rbind(matrix(rnorm(5*20), nrow = 5, ncol = 20),
matrix(rnorm(5*20, mean = 1), nrow = 5, ncol = 20))
g2 <- factor(c(rep("group 1", 10), rep("group 2", 10)))
mod.t.test(X, group = g2)
## corresponds to
design <- model.matrix(~ 0 + g2)
colnames(design) <- c("group1", "group2")
fit1 <- lmFit(X, design)
cont.matrix <- makeContrasts(group1vsgroup2="group1-group2", levels=design)
fit2 <- contrasts.fit(fit1, cont.matrix)
fit3 <- eBayes(fit2)
topTable(fit3, coef = 1, number = Inf, confint = TRUE, sort.by = "none")[,-4]
## Paired two-sample test
mod.t.test(X, group = g2, paired = TRUE)
[Package MKmisc version 1.9 Index]