MRTS {MKendall} | R Documentation |
Matrix Robust Two-Step Algorithm for Large-Dimensional Matrix Elliptical Factor Model
Description
This function is to fit the large-dimensional matrix elliptical factor model via the Matrix Robust Two-Step (RTS) algorithm.
Usage
MRTS(X, k, r)
Arguments
X |
Input three-dimensional array, of dimension |
k |
A positive integer indicating the row factor numbers. |
r |
A positive integer indicating the column factor numbers. |
Details
See He at al. (2022) <arXiv:2207.09633> for details.
Value
The return value is a list. In this list, it contains the following:
Rloading |
The estimated row loading matrix of dimension |
Cloading |
The estimated column loading matrix of dimension |
Fhat |
The estimated factor matrices, are output in the form of a three-dimensional array with dimensions of |
Author(s)
Yong He, Yalin Wang, Long Yu, Wang Zhou and Wenxin Zhou.
References
He, Y., Wang, Y., Yu, L., Zhou, W., & Zhou, W. X. (2022). A new non-parametric Kendall's tau for matrix-value elliptical observations <arXiv:2207.09633>.
Examples
set.seed(123456)
T=20;p=10;q=10;k=2;r=2
R=matrix(runif(p*k,min=-1,max=1),p,k)
C=matrix(runif(q*r,min=-1,max=1),q,r)
X=Y=E=array(0,c(T,p,q))
for(i in 1:T){
Y[i,,]=R%*%matrix(rnorm(k*r),k,r)%*%t(C)
E[i,,]=matrix(rnorm(p*q),p,q)
}
X=Y+E
fit=MRTS(X,k,r)
fit$Rloading;fit$Cloading;fit$Fhat