Predict.matrix.unc_pcre.random.effect {MJMbamlss} | R Documentation |
mgcv-style constructor for prediction of PC-basis functional random effects
Description
This predictor function uses time-information saved in the object. This is handled within the bamlss-transform function, so this function is not exported.
Usage
## S3 method for class 'unc_pcre.random.effect'
Predict.matrix(object, data)
Arguments
object |
a smooth specification object, see
|
data |
see |
Value
design matrix for PC-based functional random effects
Author(s)
Alexander Volkmann, adapted from 'Predict.matrix.pcre.random.effect by F. Scheipl (adapted from 'Predict.matrix.random.effect' by S.N. Wood).
Examples
data(pbc_subset)
mfpca <- preproc_MFPCA(pbc_subset, uni_mean = paste0(
"logy ~ 1 + sex + drug + s(obstime, k = 5, bs = 'ps') + ",
"s(age, k = 5, bs = 'ps')"),
pve_uni = 0.99, nbasis = 5, weights = TRUE, save_uniFPCA = TRUE)
pbc_subset <- attach_wfpc(mfpca, pbc_subset, n = 2)
mfpca_list <- list(
list(functions = funData::extractObs(mfpca$functions, 1),
values = mfpca$values[1]),
list(functions = funData::extractObs(mfpca$functions, 2),
values = mfpca$values[2]))
sm <- smoothCon(s(id, fpc.1, bs = "unc_pcre",
xt = list("mfpc" = mfpca_list[[1]], scale = "FALSE")), pbc_subset)[[1]]
sm$timevar <- "obstime"
sm$term <- c(sm$term, "obstime")
pm <- PredictMat(sm, pbc_subset, n = 4*nrow(pbc_subset))
[Package MJMbamlss version 0.1.0 Index]