MHTdiscrete {MHTdiscrete}R Documentation

MHTdiscrete: A package for Multiple Hypotheses Testing for Discrete Data.

Description

The MHTdiscrete package provides two categories of important functions for discrete data mutliple hypothese testing:

FWER controlling procedures

Single-step: MBonf.p.adjust, MixBonf.p.adjust, Tarone.p.adjust.

Step-down: MHolm.p.adjust, TH.p.adjust.

Step-up: MHoch.p.adjust, Roth.p.adjust .

FDR controlling procedures

Step-down: MBL.p.adjust.

Step-up: MBH.p.adjust, GTBH.p.adjust, MBY.p.adjust, GTBY.p.adjust.

Author(s)

Yalin Zhu

References

Zhu, Y., & Guo, W. (2017). Familywise error rate controlling procedures for discrete data arXiv preprint arXiv:1711.08147.

Tarone, R. E. (1990). A modified Bonferroni method for discrete data. Biometrics, 46: 515-522.

Hommel, G., & Krummenauer, F. (1998). Improvements and modifications of Tarone's multiple test procedure for discrete data. Biometrics, 54: 673-681.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6: 65-70.

Roth, A. J. (1999). Multiple comparison procedures for discrete test statistics. Journal of statistical planning and inference, 82: 101-117.

Gilbert, P. B. (2005). A modified false discovery rate multiple-comparisons procedure for discrete data, applied to human immunodeficiency virus genetics. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54: 143-158.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57: 289-300.

Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29: 1165-1188.

Benjamini, Y., and Liu, W. (1999). A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. Journal of Statistical Planning and Inference, 82: 163-170.


[Package MHTdiscrete version 1.0.1 Index]