| MGLMtune {MGLM} | R Documentation |
Choose the tuning parameter value in sparse regression
Description
Finds the tuning parameter value that yields the smallest BIC.
Usage
MGLMtune(
formula,
data,
dist,
penalty,
lambdas,
ngridpt,
warm.start = TRUE,
keep.path = FALSE,
display = FALSE,
init,
weight,
penidx,
ridgedelta,
maxiters = 150,
epsilon = 1e-05,
regBeta = FALSE,
overdisp
)
Arguments
formula |
an object of class |
data |
an optional data frame, list or environment (or object coercible by |
dist |
a description of the distribution to fit. See |
penalty |
penalty type for the regularization term. Can be chosen from |
lambdas |
an optional vector of the penalty values to tune. If missing, the vector of penalty values will be set inside the function. |
ngridpt |
an optional numeric variable specifying the number of grid points to tune. If |
warm.start |
an optional logical variable to specify whether to give warm start at each tuning grid point. If |
keep.path |
an optional logical variable controling whether to output the whole solution path. The default is |
display |
an optional logical variable to specify whether to show each tuning step. |
init |
an optional matrix of initial value of the parameter estimates. Should have the compatible dimension with the data. See |
weight |
an optional vector of weights assigned to each row of the data. Should be |
penidx |
a logical vector indicating the variables to be penalized. The default value is |
ridgedelta |
an optional numeric controlling the behavior of the Nesterov's accelerated proximal gradient method. The default value is |
maxiters |
an optional numeric controlling the maximum number of iterations. The default value is |
epsilon |
an optional numeric controlling the stopping criterion. The algorithm terminates when the relative change in the objective values of two successive iterates is less then |
regBeta |
an optional logical variable used when running negative multinomial regression ( |
overdisp |
an optional numerical variable used only when fitting sparse negative multinomial model and |
Value
selectthe final sparse regression result, using the optimal tuning parameter.patha data frame with degrees of freedom and BICs at each lambda.
Author(s)
Yiwen Zhang and Hua Zhou
See Also
Examples
set.seed(118)
n <- 50
p <- 10
d <- 5
m <- rbinom(n, 100, 0.8)
X <- matrix(rnorm(n * p), n, p)
alpha <- matrix(0, p, d)
alpha[c(1, 3, 5), ] <- 1
Alpha <- exp(X %*% alpha)
Y <- rdirmn(size=m, alpha=Alpha)
sweep <- MGLMtune(Y ~ 0 + X, dist="DM", penalty="sweep", ngridpt=10)
show(sweep)