| DMD.DM.fit {MGLM} | R Documentation |
Fit multivariate discrete distributions
Description
Fit the specified multivariate discrete distribution.
Usage
DMD.DM.fit(
data,
init,
weight,
epsilon = 1e-08,
maxiters = 150,
display = FALSE
)
DMD.GDM.fit(
data,
init,
weight,
epsilon = 1e-08,
maxiters = 150,
display = FALSE
)
DMD.NegMN.fit(
data,
init,
weight,
epsilon = 1e-08,
maxiters = 150,
display = FALSE
)
MGLMfit(
data,
dist,
init,
weight,
epsilon = 1e-08,
maxiters = 150,
display = FALSE
)
Arguments
data |
a data frame or matrix containing the count data. Rows of the matrix represent observations and columns are the categories. Rows and columns of all zeros are automatically removed. |
init |
an optional vector of initial value of the parameter estimates. Should have the same dimension as the estimated parameters. See |
weight |
an optional vector of weights assigned to each row of the data. Should be Null or a numeric vector with the length equal to the number of rows of |
epsilon |
an optional numeric controlling the stopping criterion. The algorithm terminates when the relative change in the log-likelihoods of two successive iterates is less than |
maxiters |
an optional number controlling the maximum number of iterations. The default value is |
display |
an optional logical variable controlling the display of iterations. The default value is FALSE. |
dist |
a description of the distribution to fit. Choose from |
Details
See dist for details about model parameterization.
Value
Returns an object of S4 class "MGLMfit". An object of class "MGLMfit" is a list containing at least the following components:
estimatethe vector of the distribution prameter estimates.SEthe vector of standard errors of the estimates.vcovthe variance-covariance matrix of the estimates.logLthe loglikelihood value.iterthe number of iterations used.BICBayesian information criterion.AICAkaike information criterion.distributionthe distribution fitted.LRTwhendist="DM"or"GDM", it is the likelihood ratio test statistic for comparing the current model to the multinomial model. No LRT provided whendist="NegMN".LRTpvaluethe likelihood ratio test P value.gradientthe gradient at the estimated parameter values.DoFthe degrees of freedom of the model.
Author(s)
Yiwen Zhang and Hua Zhou
Examples
data(rnaseq)
Y <- as.matrix(rnaseq[, 1:6])
fit <- MGLMfit(data=Y, dist="GDM")