calcLognormalKernel {MGDrivE} | R Documentation |
Calculate Lognormal Stochastic Matrix
Description
Given a distance matrix from calcVinEll
,
calculate a stochastic matrix where one step movement probabilities follow a lognormal density.
Usage
calcLognormalKernel(distMat, meanlog, sdlog)
Arguments
distMat |
Distance matrix from |
meanlog |
Log mean of |
sdlog |
Log standard deviation of |
Details
The distribution and density functions for the lognormal kernel are given below:
F(x)=\frac{1}{2} + \frac{1}{2} \mathrm{erf}[\frac{\mathrm{ln}x-\mu}{\sqrt{2}\sigma}]
f(x)=\frac{1}{x\sigma\sqrt{2\pi}}\mathrm{exp}\left( -\frac{(\mathrm{ln}x-\mu)^{2}}{2\sigma^{2}} \right)
where \mu
is the mean on the log scale, and \sigma
is the standard deviation on the log scale.
Examples
# setup distance matrix
# two-column matrix with latitude/longitude, in degrees
latLong = cbind(runif(n = 5, min = 0, max = 90),
runif(n = 5, min = 0, max = 180))
# Vincenty Ellipsoid distance formula
distMat = calcVinEll(latLongs = latLong)
# calculate lognormal distribution over distances
# mean and standard deviation are just for example
kernMat = calcLognormalKernel(distMat = distMat, meanlog = 100, sdlog = 10)
[Package MGDrivE version 1.6.0 Index]