V {MGBT}R Documentation

Covariance matrix of M and S-squared

Description

Compute the covariance matrix of MM and S2S^2 (S-squared) given qminq_\mathrm{min}. Define the vector of four moment expectations

Ei1,2,3,4=Ψ(Φ(1)(qmin),i)\mbox,E_{i\in 1,2,3,4} = \Psi\bigl(\Phi^{(-1)}(q_\mathrm{min}), i\bigr)\mbox{,}

where Ψ(a,b)\Psi(a,b) is the gtmoms function and Φ(1)\Phi^{(-1)} is the inverse of the standard normal distribution. Using these EE, define a vector Ci1,2,3,4C_{i\in 1,2,3,4} as a system of nonlinear combinations:

C1=E1\mbox,C_1 = E_1\mbox{,}

C2=E2E12\mbox,C_2 = E_2 - E_1^2\mbox{,}

C3=E33E2E1+2E13\mbox,andC_3 = E_3 - 3E_2E_1 + 2E_1^3\mbox{, and}

C4=E44E3E1+6E2E123E14\mbox.C_4 = E_4 - 4E_3E_1 + 6E_2E_1^2 - 3E_1^4\mbox{.}

Given k=nrk = n - r from the arguments of this function, compute the symmetrical covariance matrix COVCOV with variance of MM as

COV1,1=C2/k\mbox,COV_{1,1} = C_2/k\mbox{,}

the covariance between MM and S2S^2 as

COV1,2=COV2,1=C3k(k1)\mbox,andCOV_{1,2} = COV_{2,1} = \frac{C_3}{\sqrt{k(k-1)}}\mbox{, and}

the variance of S2S^2 as

COV2,2=C4C22k+2C22k(k1)\mbox.COV_{2,2} = \frac{C_4 - C_2^2}{k} + \frac{2C_2^2}{k(k-1)}\mbox{.}

Usage

V(n, r, qmin)

Arguments

n

The number of observations;

r

The number of truncated observations; and

qmin

A nonexceedance probability threshold for X>qminX > q_\mathrm{min}.

Value

A 2-by-2 covariance matrix.

Note

Because the gtmoms function is naturally vectorized and TAC sources provide no protection if qmin is a vector (see Note under EMS). For the implementation here, only the first value in qmin is used and a warning issued if it is a vector.

Author(s)

W.H. Asquith consulting T.A. Cohn sources

Source

LowOutliers_jfe(R).txt, LowOutliers_wha(R).txt, P3_089(R).txt—Named V

References

Cohn, T.A., 2013–2016, Personal communication of original R source code: U.S. Geological Survey, Reston, Va.

See Also

EMS, VMS, gtmoms

Examples

V(58,2,.5)
#            [,1]        [,2]
#[1,] 0.006488933 0.003928333
#[2,] 0.003928333 0.006851120

[Package MGBT version 1.0.7 Index]