summaryMEclustnet {MEclustnet} | R Documentation |
Summary of MEclustnet object.
Description
Summary of the output of the function MEclustnet which fits a mixture of experts latent position cluster model.
Usage
summaryMEclustnet(fit, Y)
Arguments
fit |
An object storing the output of the function |
Y |
The n x n binary adjacency matrix, with 0 down the diagonal, that was passed to |
Value
A list with:
- AICM
The value of the AICM criterion for the fitted model.
- BICM
The value of the BICM criterion for the fitted model.
- BICMCMC
The value of the BICMCMC criterion for the fitted model.
- betamean
The posterior mean vector of the regression coefficients for the link probabilities model.
- betasd
The standard deviation of the posterior distribution of beta.
- taumean
A matrix with G rows, detailing the posterior mean of the regression coefficients for the mixing proportions model.
- tausd
The standard deviation of the posterior distribution of tau.
- mumean
A G x d matrix containing the posterior mean of the latent locations' mean.
- meansd
The standard deviation of the posterior distribution of mu.
- sigma2mean
A vector of length G containing the posterior mean of the latent locations' covariance.
- sigma2sd
The standard deviation of the posterior distribution of the latent locations' covariance.
- Kmode
A vector of length n detailing the posterior modal cluster membership for each node.
- zmean
An n x d matrix containing the posterior mean latent location for each node.
References
Isobel Claire Gormley and Thomas Brendan Murphy. (2010) A Mixture of Experts Latent Position Cluster Model for Social Network Data. Statistical Methodology, 7 (3), pp.385-405.
See Also
Examples
#################################################################
# An example analysing a 2016 Twitter network of US politicians.
#################################################################
# Number of iterations etc. are set to low values for illustrative purposes.
# Longer run times are likely to be required to achieve sufficient mixing.
library(latentnet)
data(us.twitter.adjacency)
data(us.twitter.covariates)
link.vars = c(1)
mix.vars = c(1,5,7,8)
fit = MEclustnet(us.twitter.adjacency, us.twitter.covariates,
link.vars, mix.vars, G=4, d=2, itermax = 500, burnin = 50, uphill = 1, thin=10)
# Plot the trace plot of the mean of dimension 1 for each cluster.
matplot(t(fit$mustore[,1,]), type="l", xlab="Iteration", ylab="Parameter")
# Compute posterior summaries
summ = summaryMEclustnet(fit, us.twitter.adjacency)
plot(summ$zmean, col=summ$Kmode, xlab="Dimension 1", ylab="Dimension 2", pch=summ$Kmode,
main = "Posterior mean latent location for each node.")
# Plot the resulting latent space, with uncertainties
plotMEclustnet(fit, us.twitter.adjacency, link.vars, mix.vars)
# Examine which politicians are in which clusters...
clusters = list()
for(g in 1:fit$G)
{
clusters[[g]] = us.twitter.covariates[summ$Kmode==g,c("name", "party")]
}
clusters