Mixtures of Exponential-Distance Models with Covariates


[Up] [Top]

Documentation for package ‘MEDseq’ version 1.4.1

Help Pages

MEDseq-package MEDseq: Mixtures of Exponential-Distance Models with Covariates
biofam Family life states from the Swiss Household Panel biographical survey
dbs Compute the Density-based Silhouette
dist_freqwH Pairwise frequency-Weighted Hamming distance matrix for categorical data
fitted.MEDgating Predictions from MEDseq gating networks
get_MEDseq_results Extract results from a MEDseq model
MEDseq MEDseq: Mixtures of Exponential-Distance Models with Covariates
MEDseq_AvePP Average posterior probabilities of a fitted MEDseq model
MEDseq_clustnames Automatic labelling of clusters using central sequences
MEDseq_compare Choose the best MEDseq model
MEDseq_control Set control values for use with MEDseq_fit
MEDseq_entropy Entropy of a fitted MEDseq model
MEDseq_fit MEDseq: Mixtures of Exponential-Distance Models with Covariates
MEDseq_meantime Compute the mean time spent in each sequence category
MEDseq_nameclusts Automatic labelling of clusters using central sequences
MEDseq_news Show the NEWS file
MEDseq_stderr MEDseq gating network standard errors
mvad MVAD: Transition from school to work
plot.MEDseq Plot MEDseq results
predict.MEDgating Predictions from MEDseq gating networks
print.MEDseq MEDseq: Mixtures of Exponential-Distance Models with Covariates
print.MEDseqCompare Choose the best MEDseq model
print.MEDseqMeanTime Compute the mean time spent in each sequence category
residuals.MEDgating Predictions from MEDseq gating networks
summary.MEDseq MEDseq: Mixtures of Exponential-Distance Models with Covariates
wKModes Weighted K-Modes Clustering with Tie-Breaking