mdp_eval_policy_TD_0 {MDPtoolbox} | R Documentation |
Evaluates a policy using the TD(0) algorithm
Description
Evaluates a policy using the TD(0) algorithm
Usage
mdp_eval_policy_TD_0(P, R, discount, policy, N)
Arguments
P |
transition probability array. P can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S]. |
R |
reward array. R can be a 3 dimensions array [S,S,A] or a list [[A]], each element containing a sparse matrix [S,S] or a 2 dimensional matrix [S,A] possibly sparse. |
discount |
discount factor. discount is a real number which belongs to [0; 1[. |
policy |
a policy. policy is a S length vector. Each element is an integer corresponding to an action. |
N |
(optional) number of iterations to perform. N is an integer greater than the de- fault value. By default, N is set to 10000 |
Details
mdp_eval_policy_TD_0 evaluates the value fonction associated to a policy using the TD(0) algorithm (Reinforcement Learning).
Value
Vpolicy |
value fonction. Vpolicy is a length S vector. |
Examples
# With a non-sparse matrix
P <- array(0, c(2,2,2))
P[,,1] <- matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE)
P[,,2] <- matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE)
R <- matrix(c(5, 10, -1, 2), 2, 2, byrow=TRUE)
mdp_eval_policy_TD_0(P, R, 0.9, c(1,2))
# With a sparse matrix
P <- list()
P[[1]] <- Matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow=TRUE, sparse=TRUE)
P[[2]] <- Matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow=TRUE, sparse=TRUE)
mdp_eval_policy_TD_0(P, R, 0.9, c(1,2))