prepareGen {MCPModGeneral} | R Documentation |
Prepare General Data for the MCPMod Function
Description
This function serves as an alternative for using the MCPModGen function
directly for general data. The function returns the estimates for \mu
and
S
, which are needed for MCPMod.
Usage
prepareGen(
family = c("negative binomial", "binomial", "poisson"),
link = c("log", "logit", "probit", "cauchit", "cloglog", "identity", "log risk ratio",
"risk ratio", "sqrt"),
w = NULL,
dose,
resp,
data = NULL,
addCovars = ~1,
placAdj = FALSE,
offset = NULL,
...
)
Arguments
family |
A character string containing the error distribution to be used in the model. |
link |
A character string for the model link function. |
w |
Either a numeric vector of the same length as dose and resp, or a character vector denoting the column name in the data. |
dose |
Either vectors of equal length specifying dose and response
values, or character vectors specifying the names of variables in the data
frame specified in |
resp |
Either vectors of equal length specifying dose and response
values, or character vectors specifying the names of variables in the data
frame specified in |
data |
Data frame with names specified in 'dose', 'resp', and optionally 'w'. If data is not specified, it is assumed that 'dose' and 'resp' are numerical vectors |
addCovars |
Formula specifying additive linear covariates (e.g. '~ factor(gender)'). |
placAdj |
Logical specifying whether the provided by 'resp' are to be treated as placebo-adjusted estimates. |
offset |
Either a numeric vector of the same length as dose and resp, or a character vector denoting the column name in the data. |
... |
Additional arguments to be passed to |
Value
A list containing the \mu
vector and S
matrix.
Examples
# Analyze the binary migraine data from the DoseFinding package.
data(migraine)
models = Mods(linear = NULL, emax = 1, quadratic = c(-0.004), doses = migraine$dose)
# Now analyze using binomial weights
PFrate <- migraine$painfree/migraine$ntrt
migraine$pfrat = migraine$painfree / migraine$ntrt
muS = prepareGen("binomial", "logit", w = "ntrt", dose = "dose",
resp = "pfrat", data = migraine)
## Look at the elements of muS
muS
MCPMod(muS$data$dose, muS$data$resp, models = models, S = muS$S,
type = "general", selModel = "aveAIC",Delta = 0.2)