weibfit {MCPModBC}R Documentation

Computes different estimators for the censored Weibull regression model

Description

Computes the maximum likelihood estimators (MLE) for the censored Weibull regression model. The bias-corrected estimators based on the Cox and Snell's and Firth's methods also are available. In addition, for the covariance matrix the corrected estimators discussed in Magalhaes et al. 2021 also are available.

Usage

weibfit(formula, data, L = Inf, estimator = "MLE", 
	corrected.var = FALSE)

Arguments

formula

A formula that contains on the left hand side an object of the type Surv and on the right hand side the covariates definition

data

A data.frame in which the formula argument can be evaluated

L

the prefixed censoring times. L=\infty by default.

estimator

the class of estimator used: MLE (maximum likelihood estimator, by default), BCE (bias-corrected estimator based on the Cox and Snell's method) and Firth (bias-corrected estimator based on the Firth's method).

corrected.var

should the covariance-corrected estimator be used? (FALSE by default). See details.

Details

The Weibull distribution considered here has probability density function

f(t;\lambda, \sigma)=\frac{1}{\sigma \lambda^{1/\sigma}}t^{1/\sigma-1}\exp\left\{-\left(\frac{t}{\lambda}\right)^{1/\sigma}\right\}, \quad t, \sigma, \lambda>0.

The regression structure is incorporated as

\log(\lambda_i)={\bm x}_i^\top {\bm \beta}, \quad i=1,\ldots,n.

For the computation of the bias-corrected estimators, \sigma is assumed as fixed in the jackknife estimator based on the traditional MLE.

The Fisher information matrix for \bm \beta is given by {\bm K}=\sigma^{-2} {\bm X}^\top {\bm W} {\bm X}, where {\bm X}=({\bm x}_1,\ldots,{\bm x}_n)^\top, {\bm W}=\mbox{diag}(w_1,\ldots,w_n), and

w_i=E\left[\exp\left(\frac{y_i-\log \lambda_i}{\sigma}\right)\right]=q \times \left\{ 1 - \exp\left[ -L_i^{1/\sigma} \exp(-\mu_i/\sigma) \right] \right\} + (1-q)\times \left(r/n\right),

with q = P\left(W_{(r)}\leq \log L_i\right) and W_{(r)} denoting the rth order statistic from W_1, \ldots, W_n, with q=1 and q=0 for types I and II censoring, respectively. (See Magalhaes et al. 2019 for details).

The bias-corrected maximum likelihood estimator based on the Cox and Snell's method (say \widetilde{\bm \beta}) is based on a corrective approach given by \widetilde{\beta}=\widehat{\beta}-B(\widehat{\beta}), where

B({\bm \beta})= - \frac{1}{2 \sigma^3} {\bm P} {\bm Z}_d \left({\bm W} + 2 \sigma {\bm W}^{\prime}\right) {\bm 1},

with {\bm P} = {\bm K}^{-1} {\bm X}^{\top}, {\bm Z} = {\bm X} {\bm K}^{-1} {\bm X}^{\top}, {\bm Z}_d is a diagonal matrix with diagonal given by the diagonal of {\bm Z}, {\bm W}^{\prime} = diag(w_1^{\prime}, \ldots, w_n^{\prime}), w_i^{\prime} = - \sigma^{-1} L_i^{1/\sigma} \exp\{ -L_i^{1/\sigma} \exp(-\mu_i/\sigma) - \mu_i/\sigma \} and {\bm 1} is a n-dimensional vector of ones.

The bias-corrected maximum likelihood estimator based on the Firth's method (say \check{\bm \beta}) is based on a preventive approach, which is the solution for the equation {\bm U}_{{\bm \beta}}^{\star} = {\bm 0}, where

{\bm U}_{{\bm \beta}}^{\star} = {\bm U}_{{\bm \beta}} - {\bm K}_{{\bm \beta} {\bm \beta}} B({\bm \beta}).

The covariance correction is based on the general result of Magalhaes et al. 2021 given by

\mbox{{\bf Cov}}_{\bm 2}^{\bm \tau}({\bm \beta}^{\star}) = {\bm K}^{-1} + {\bm K}^{-1} \left\{ {\bm \Delta} + {\bm \Delta}^{\top} \right\} {\bm K}^{-1} + \mathcal{O}(n^{-3})

where {\Delta} = -0.5 {\Delta}^{(1)} + 0.25 {\Delta}^{(2)} + 0.5 \tau_2 {\Delta}^{(3)}, with

\Delta^{(1)} = \frac{1}{\sigma^4} {\bm X}^{\top} {\bm W}^{\star} {\bm Z}_{d} {\bm X},

\Delta^{(2)} = - \frac{1}{\sigma^6} {\bm X}^{\top} \left[ {\bm W} {\bm Z}^{(2)} {\bm W} - 2 \sigma {\bm W} {\bm Z}^{(2)} {\bm W}^{\prime} - 6 \sigma^2 {\bm W}^{\prime} {\bm Z}^{(2)} {\bm W}^{\prime} \right] {\bm X},

and

\Delta^{(3)} = \frac{1}{\sigma^5} {\bm X}^{\top} {\bm W}^{\prime} {\bm W}^{\star\star} {\bm X},

where {\bm W}^{\star} = diag(w_1^{\star}, \ldots, w_n^{\star}), w_i^{\star} = w_i (w_i -2) - 2 \sigma w_i^{\prime} + \sigma \tau_1 (w_i^{\prime} + 2 \sigma w_i^{\prime\prime}), {\bm Z}^{(2)} = {\bm Z} \odot {\bm Z}, with \odot representing a direct product of matrices (Hadamard product), {\bm W}^{\star\star} is a diagonal matrix, with {\bm Z} ( {\bm W} + 2 \sigma {\bm W}^{\prime}) {\bm Z}_{d} {\bm 1} as its diagonal, {\bm W}^{\prime\prime} = diag(w_1^{\prime\prime}, \ldots, w_n^{\prime\prime}), w_i^{\prime\prime} = - \sigma^{-1} w_i^{\prime} \left[ L_i^{1/\sigma} \exp(-\mu_i/\sigma) - 1 \right], {\bm \tau} = (\tau_1, \tau_2) = (1, 1) indicating the second-order covariance matrix of the MLE {\bm \beta}^{\star} = \widehat{{\bm \beta}} denoted by \mbox{{\bf Cov}}_{\bm 2}(\widehat{{\bm \beta}}) and {\bm \tau} = (0, -1) indicating the second-order covariance matrix of the BCE {\bm \beta}^{\star} = \widetilde{{\bm \beta}} denoted by \mbox{{\bf Cov}}_{\bm 2}(\widetilde{{\bm \beta}}).

Value

coefficients

a vector with the estimated coefficients for \bm \beta.

var

a matrix with the estimated covariance matrix for the estimates of the regression coefficients \bm \beta

scale

the estimated scale parameter \sigma

loglik

the value for the logarithm of the likelihood function evaluated in the estimates of \bm \beta and \sigma

linear.predictors

a vector with the estimated linear predictor {\bm x}_i^\top {\bm \beta}

y

a vector with the observed times (possibly censored)

estimator

the estimator used for \bm \beta: MLE, BCE or Firth.

corrected.var

logical. TRUE if a correction for the covariance was used, FALSE otherwise.

Author(s)

Gallardo D.I., Diniz, M.A., Magalhaes, T.M.

References

Cox, D.R., Snell E.J. A general definition of residuals Journal of the Royal Statistical Society. Series B (Methodological). 1968;30:248-275.

Diniz, Márcio A. and Gallardo, Diego I. and Magalhães, Tiago M. (2023). Improved inference for MCP-Mod approach for time-to-event endpoints with small sample sizes. arXiv <doi.org/10.48550/arXiv.2301.00325>

Firth, D. Bias reduction of maximum likelihood estimates Biometrika. 1993;80:27-38.

Magalhaes Tiago M., Botter Denise A., Sandoval Monica C. A general expression for second- order covariance matrices - an application to dispersion models Brazilian Journal of Probability and Statistics. 2021;35:37-49.

Examples


require(survival)
set.seed(2100)

##Generating covariates
n=20; 
x<-runif(n, max=10)
lambda<-exp(1.2-0.5*x); sigma<-1.5

##Drawing T from Weibull model and fixing censoring at 1.5
T<-rweibull(n, shape=1/sigma, scale=lambda); L<-rep(1.5, n)

##Defining the observed times and indicators of failure
y<-pmin(T,L); 
delta<-ifelse(T<=L, 1, 0)
data=data.frame(y=y, delta=delta, x=x)

##Fitting for Weibull regression model

##Traditional MLE with corrected variance
ex1=weibfit(Surv(y,delta)~x, data=data, L=L, estimator="MLE", 
	corrected.var=TRUE)
summary(ex1)

##BCE without corrected variance
ex2=weibfit(Surv(y,delta)~x, data=data, L=L, estimator="BCE", 
	corrected.var=FALSE)
summary(ex2)

##BCE with corrected variance
ex3=weibfit(Surv(y,delta)~x, data=data, L=L, estimator="BCE", 
	corrected.var=TRUE)
summary(ex3)

##Firth's correction without corrected variance
ex4=weibfit(Surv(y,delta)~x, data=data, L=L, estimator="BCE", 
	corrected.var=FALSE)
summary(ex4)


[Package MCPModBC version 1.1 Index]