summary.mcpmod_simulation {MCPModBC} | R Documentation |
Summary of simulation results
Description
It summarizes results of simulations of dose-finding trials following the MCP-Mod approach with bias-corrected and second-order covariance matrices.
Usage
## S3 method for class 'mcpmod_simulation'
summary(object, ...)
Arguments
object |
an object of the "mcpmod_simulation" class. |
... |
additional arguments affecting the summary produced. |
Value
A data frame with a summary with the information provided by mcpmod_simulation
.
References
Diniz, Márcio A. and Gallardo, Diego I. and Magalhães, Tiago M. (2023). Improved inference for MCP-Mod approach for time-to-event endpoints with small sample sizes. arXiv <doi.org/10.48550/arXiv.2301.00325>
Examples
library(DoseFinding)
library(MCPModBC)
## doses scenarios
doses <- c(0, 5, 25, 50, 100)
nd <- length(doses)
sample.size <- 25
# shape parameter
sigma.true <- 0.5
# median survival time for placebo dose
mst.control <- 4
# maximum hazard ratio between active dose and placebo dose
hr.ratio <- 4
# minimum hazard ratio between active dose and placebo dose
hr.Delta <- 2
# hazard rate for placebo dose
placEff <- log(mst.control/(log(2)^sigma.true))
# maximum hazard rate for active dose
maxEff <- log((mst.control*(hr.ratio^sigma.true))/(log(2)^sigma.true))
# minimum hazard rate for active dose
minEff.Delta <- log((mst.control*(hr.Delta^sigma.true))/(log(2)^sigma.true))
Delta <- (minEff.Delta - placEff)
## MCP Parameters
significance.level <- 0.05
selModel <- "AIC"
emax <- guesst(d = doses[4], p = 0.5, model="emax")
exp <- guesst(d = doses[4], p = 0.1, model="exponential", Maxd = doses[nd])
logit <- guesst(d = c(doses[3], doses[4]), p = c(0.1,0.8), "logistic",
Maxd= doses[nd])
betam <- guesst(d = doses[2], p = 0.3, "betaMod", scal=120, dMax=50,
Maxd= doses[nd])
models.candidate <- Mods(emax = emax, linear = NULL,
exponential = exp, logistic = logit,
betaMod = betam, doses = doses,
placEff = placEff, maxEff = (maxEff- placEff))
plot(models.candidate)
## Simulation Parameters
n.sim <- 10
seed <- 1234
n.cores <- 1
## True Model
model.true <- "emax"
response <- model_response(doses = doses,
distr = "weibull",
model.true = model.true,
models.candidate = models.candidate)
lambda.true <- response$lambda
parm <- list(lambda = lambda.true, sigma = sigma.true)
## Scenario: Censoring 10%
censoring.rate <- 0.1
test <- mcpmod_simulation(doses = doses,
parm = parm,
sample.size = sample.size,
model.true = model.true,
models.candidate = models.candidate,
selModel = selModel,
significance.level = significance.level,
Delta = Delta,
distr = "weibull",
censoring.rate = censoring.rate,
sigma.estimator = "jackknife",
n.cores = n.cores, seed = seed, n.sim = n.sim)
summary(test)
[Package MCPModBC version 1.1 Index]