planMM {MCPMod} | R Documentation |
Calculate planning quantities for MCPMod
Description
Calculates the optimal model contrasts, the critical value and the contrast correlation matrix, i.e. the quantities necessary to conduct the multiple contrast test for a given candidate set of dose-response models.
Usage
planMM(models, doses, n, off = 0.1 * max(doses), scal = 1.2 * max(doses),
std = TRUE, alpha = 0.025, twoSide = FALSE,
control = mvtnorm.control(), cV = TRUE, muMat = NULL)
Arguments
models |
A list of candidate models |
doses |
A numeric vector giving the doses to be administered. |
n |
The vector of sample sizes per group. In case just one number is specified, it is assumed that all group sample sizes are equal to this number. |
off |
Offset parameter for the linear in log model (default 10 perc of the maximum dose). |
scal |
Scale parameter for the beta model (default 20 perc. larger than maximum dose). |
std |
Optional logical indicating, whether standardized version of the models should be assumed. |
alpha |
Level of significance (default: 0.025) |
twoSide |
Logical indicating whether a two sided or a one-sided test should be performed. By default FALSE, so one-sided testing. |
control |
A list of options for the |
cV |
Logical indicating whether critical value should be calculated |
muMat |
An optional matrix with means in the columns and given dimnames (dose levels
and names of contrasts). If specified
the |
Value
An object of class planMM with the following components:
contMat |
Matrix of optimal contrasts. |
critVal |
The critical value for the test (if calculated) |
muMat |
Matrix of (non-normalized) model means |
corMat |
Matrix of the contrast correlations. |
References
Bornkamp B., Pinheiro J. C., and Bretz, F. (2009). MCPMod: An R Package for the Design and Analysis of Dose-Finding Studies, Journal of Statistical Software, 29(7), 1–23
Bretz, F., Pinheiro, J., and Branson, M. (2005), Combining Multiple Comparisons and Modeling Techniques in Dose-Response Studies, Biometrics, 61, 738–748
Pinheiro, J. C., Bornkamp, B., and Bretz, F. (2006). Design and analysis of dose finding studies combining multiple comparisons and modeling procedures, Journal of Biopharmaceutical Statistics, 16, 639–656
See Also
Examples
# Example from JBS paper
doses <- c(0,10,25,50,100,150)
models <- list(linear = NULL, emax = 25,
logistic = c(50, 10.88111), exponential= 85,
betaMod=matrix(c(0.33,2.31,1.39,1.39), byrow=TRUE, nrow=2))
plM <- planMM(models, doses, n = rep(50,6), alpha = 0.05, scal=200)
plot(plM)
## Not run:
# example, where means are directly specified
# doses
dvec <- c(0, 10, 50, 100)
# mean vectors
mu1 <- c(1, 2, 2, 2)
mu2 <- c(1, 1, 2, 2)
mu3 <- c(1, 1, 1, 2)
mMat <- cbind(mu1, mu2, mu3)
dimnames(mMat)[[1]] <- dvec
planMM(muMat = mMat, doses = dvec, n = 30)
## End(Not run)