modelMeans {MCPMod} | R Documentation |
Calculate mean vectors for a given candidate set
Description
Calculates the mean or standardized mean vectors for a candidate set of models. This function is mainly for internal use.
Usage
modelMeans(models, doses, std = TRUE, off = 0.1 * max(doses),
scal = 1.2 * max(doses))
Arguments
models |
A list of candidate models, or the output
of the |
doses |
A numeric vector giving the doses to be administered. |
std |
Logical indicating whether standardized or non-standardized version of model function should be used. |
off |
Offset parameter for linear in log model. |
scal |
Scale parameter for beta model. |
Value
Matrix with standardized or non-standardized model means.
Examples
doses <- c(0, 10, 25, 50, 100, 150)
models <- list(linear = NULL, emax = c(25),
logistic = c(50, 10.88111), exponential = c(85),
betaMod = matrix(c(0.33, 2.31, 1.39, 1.39), byrow=TRUE,nrow=2))
modelMeans(models, doses, std = TRUE)
# now non-standardized means
Models <- fullMod(models, doses, base = 0, maxEff = 0.4, scal = 200)
modelMeans(Models, doses, std = FALSE)
[Package MCPMod version 1.0-10.1 Index]