gpdp {MCMC4Extremes} | R Documentation |
Posterior Distribution with Parameters of GPD
Description
MCMC runs of posterior distribution of data with parameters of Generalized Pareto Distribution
(GPD), with parameters sigma
and xi
.
Usage
gpdp(data, threshold, int=1000)
Arguments
data |
data vector |
threshold |
a threshold value |
int |
number of iteractions selected in MCMC. The program selects 1 in each 10
iteraction, then |
Value
An object of class gpdp
that gives a list containing the points of posterior distributions of sigma
and xi
of the gpd distribution, the data, mean posterior, median posterior and the credibility interval of the parameters.
Note
The joint priordistribution for these parameters is the Jeffreys prior Given as Castellanos and Cabras (2007).
References
Castellanos, M. A. and Cabras, S. (2007). A default Bayesian procedure for the generalized Pareto distribution, Journal of Statistical Planning and Inference, 137, 473-483.
See Also
Examples
# Obtaining posterior distribution of a vector of simulated points
x=rgpd(300,xi=0.1,mu=9,beta=2) # in this case beta is the scale parameter sigma
# Obtaning 1000 points of posterior distribution
ajuste=gpdp(x,9, 200)
# Histogram of posterior distribution of the parameters,with 95% credibility intervals
# Danish data for evir package, modelling losses over 10
## Not run data(danish)
## Not run out=gpdp(danish,10,300)