pmcid {MCID} | R Documentation |
Point and interval estimation for the MCID at the population level
Description
pmcid
returns the point estimate for the MCID at the population level
Usage
pmcid(x, y, n, delta, maxit = 100, tol = 0.01, alpha = 0.05)
Arguments
x |
a continuous variable denoting the outcome change of interest |
y |
a binary variable indicating the patient-reported outcome derived from the anchor question |
n |
the sample size |
delta |
the selected tuning parameter |
maxit |
the maximum number of iterations. Defaults to 100 |
tol |
the convergence tolerance. Defaults to 0.01 |
alpha |
nominal level of the confidence interval. Defaults to 0.05 |
Value
a list including the point estimate of the population MCID and its standard error, and the confidence interval based on the asymptotic normality
Examples
n <- 500
deltaseq <- seq(0.1, 1, 0.1)
a <- 0.2
b <- -0.1
p <- 0.5
### True MCID is 0.5 ###
set.seed(115)
y <- 2 * rbinom(n, 1, p) - 1
y_1 <- which(y == 1)
y_0 <- which(y == -1)
x <- c()
x[y_1] <- rnorm(length(y_1), a, 0.1)
x[y_0] <- rnorm(length(y_0), b, 0.1)
sel <- cv.pmcid(x = x, y = y, delseq = deltaseq, k = 5,
maxit = 100, tol = 1e-02)
delsel <- sel$'Selected delta'
result <- pmcid(x = x, y = y, n = n, delta = delsel,
maxit = 100, tol = 1e-02, alpha = 0.05)
result$'Point estimate'
result$'Standard error'
result$'Confidence interval'
[Package MCID version 0.1.0 Index]