grocery2 {MCI} | R Documentation |
Grocery store market areas in Goettingen
Description
Market areas of grocery stores in Goettingen, generated from a POS survey in Goettingen (Germany) from June 2015. The survey dataset contains 224 cases (i
= 7 submarkets x j
= 32 suppliers). The data is the result of a survey that is not representative (see grocery1) and also biased due to the data preparation. The data should be regarded as an example.
Usage
data("grocery2")
Format
A data frame with 224 observations on the following 8 variables.
plz_submarket
a factor with 7 levels (
PLZ_37073
,PLZ_37075
, ...) representing the submarkets (places of residence based on the five-digit ZIP codes) in the study areastore_code
a factor with 32 levels (
ALDI1
,ALDI3
, ...,EDEKA1
, ...REWE1
, ...), identifying the store code of the mentioned grocery store in the study area, data from Wieland (2011)store_chain
a factor with 11 levels (
Aldi
,Edeka
, ...,Kaufland
, ...) for the store chain of the grocery stores in the study area, data from Wieland (2011)store_type
a factor with 3 levels for the store type (
Biosup
= bio-supermarkt,Disc
= discounter,Sup
= supermarket)salesarea_qm
a numeric vector for the sales area of the grocery stores in sqm, data from Wieland (2011)
pricelevel_euro
a numeric vector for the price level of the grocery chain (standardized basket in EUR), based on the data from DISQ (2015)
dist_km
a numeric vector for the distance from the places of residence (ZIP codes) to the grocery stores in km
p_ij_obs
a numeric vector for the empirically observed (and corrected) market shares (
p_{ij}
) of the stores in the submarkets
Source
DISQ (Deutsches Institut fuer Servicequalitaet) (2015) “Discounter guenstig, Vollsortimenter serviceorientiert. Studie Lebensmittelmaerkte (15.10.2015)”. http://disq.de/2015/20151015-Lebensmittelmaerkte.html
Wieland, T. (2011): “Nahversorgung mit Lebensmitteln in Goettingen 2011 - Eine Analyse der Angebotssituation im Goettinger Lebensmitteleinzelhandel unter besonderer Beruecksichtigung der Versorgungsqualitaet”. Goettinger Statistik Aktuell, 35. Goettingen. http://www.goesis.goettingen.de/pdf/Aktuell35.pdf
Primary empirical sources: POS (point of sale) survey in the authors' course (“Seminar Angewandte Geographie 1: Stadtentwicklung und Citymarketing an einem konkreten Fallbeispiel”, University of Goettingen/Institute of Geography, June 2015), own calculations
See Also
Examples
data(grocery2)
# Loads the data
mci.transmat (grocery2, "plz_submarket", "store_code", "p_ij_obs", "dist_km", "salesarea_qm")
# Applies the log-centering transformation to the dataset using the function mci.transmat