| Freiburg1 {MCI} | R Documentation |
Distance matrix for grocery stores in Freiburg
Description
Preliminary stage of an interaction matrix: Distance matrix for all statistical 42 districts and all 63 grocery stores (i = 42 submarkets x j = 63 suppliers) in Freiburg (Germany) including the size of the grocery stores.
Usage
data("Freiburg1")
Format
A data frame with 2646 observations on the following 4 variables.
districta numeric vector representing the 42 statistical districts of Freiburg
storea numeric vector identifying the store code of the mentioned grocery store in the study area
salesareaa numeric vector for the sales area of the grocery stores in sqm
distancea numeric vector for the distance from the places of residence (statistical districts) to the grocery stores in km
Source
Wieland, T. (2015): “Nahversorgung im Kontext raumoekonomischer Entwicklungen im Lebensmitteleinzelhandel - Konzeption und Durchfuehrung einer GIS-gestuetzten Analyse der Strukturen des Lebensmitteleinzelhandels und der Nahversorgung in Freiburg im Breisgau”. Projektbericht. Goettingen : GOEDOC, Dokumenten- und Publikationsserver der Georg-August-Universitaet Goettingen. http://webdoc.sub.gwdg.de/pub/mon/2015/5-wieland.pdf
References
Wieland, T. (2015): “Nahversorgung im Kontext raumoekonomischer Entwicklungen im Lebensmitteleinzelhandel - Konzeption und Durchfuehrung einer GIS-gestuetzten Analyse der Strukturen des Lebensmitteleinzelhandels und der Nahversorgung in Freiburg im Breisgau”. Projektbericht. Goettingen : GOEDOC, Dokumenten- und Publikationsserver der Georg-August-Universitaet Goettingen. http://webdoc.sub.gwdg.de/pub/mon/2015/5-wieland.pdf
Examples
data(Freiburg1)
data(Freiburg2)
data(Freiburg3)
# Loads the data
huff_mat <- huff.shares (Freiburg1, "district", "store", "salesarea", "distance")
# Market area estimation using the Huff Model with standard parameters
# (gamma = 1, lambda = -2)
huff_mat_pp <- merge (huff_mat, Freiburg2)
# Adding the purchasing power data for the city districts
huff_total <- shares.total (huff_mat_pp, "district", "store", "p_ij", "ppower")
# Total expected sales and shares
huff_total_control <- merge (huff_total, Freiburg3, by.x = "suppliers_single",
by.y = "store")
model.fit(huff_total_control$annualsales, huff_total_control$sum_E_j, plotVal = TRUE)