est_mixedGMM {MCCM} | R Documentation |
Estimating Mixed Correlation Matrix by IGMM
Description
An accelerated function to estimate a mixed correlation coefficient matrix, as well as its covariance matrix, for dataframes containing continuous and ordinal variable.
Usage
est_mixedGMM(
dataYX,
order_indx,
R0 = NULL,
app = TRUE,
korder = 2,
max_iter = 1000,
max_tol = 1e-08,
show_log = FALSE
)
Arguments
dataYX |
a dataframe or matrix containing both continuous and ordinal variables. |
order_indx |
a vector to indicate the ordinal variables. |
R0 |
the initial value for correlation vector, default Pearson correlation matrix. |
app |
bool value for approximation, TRUE for Legendre approximation, FALSE for common integral. |
korder |
the order of Legendre approximation. |
max_iter |
max iteration number for IGMM. |
max_tol |
max tolerance for iteration algorithm. |
show_log |
bool value, TRUE for showing calculation log. |
Value
Rhat |
The estimated correlation coefficients. |
COV |
The estimated covariance matrix for Rhat |
References
arXiv:2404.06781
Examples
library(mvtnorm)
library(MASS)
set.seed(1997)
n = 500
rho12=0.3
rho13=0.4
rho14=0.5
rho23=0.6
rho24=0.7
rho34=0.8
R = matrix(c(1,rho12,rho13,rho14,rho12,1,rho23,rho24,rho13,rho23,1,rho34,
rho14,rho24,rho34,1),4,4)
indc = c(3,4)
thresholds = list(c(),c(),0,0)
data1 = gen_mixed(n=n,R=R,indc=indc,thresholds=thresholds)
data2 = data.frame(data1$observed)
out1 = est_mixedGMM(dataYX = data2,order_indx = indc)
print(out1$Rhat)
print(out1$COV)
[Package MCCM version 0.1.0 Index]