plot.MCAvariants {MCAvariants} | R Documentation |
Main plot function for classical and ordered multiple correspondence analysis
Description
This function allows the analyst to produce the suitable graphical displays with respect to the classical and ordered multiple
correspondence analysis.
The main plot function called from the main function MCAvariants
.
It produces classical graphical displays for catype = "mca"
and catype = "omca"
.
Usage
## S3 method for class 'MCAvariants'
plot(x, catype = "mca", firstaxis = 1, lastaxis = 2, thirdaxis = 3, cex = 0.8,
cex.lab = 0.8, prop = 1, plot3d = FALSE, plotind= FALSE, M=2,...)
Arguments
x |
Represents the set of the output parameters of the main function |
catype |
The input parameter specifying what variant of correspondence analysis is requested. |
firstaxis |
The dimension reflected along the horizontal axis. |
lastaxis |
The dimension reflected along the vertical axis. |
thirdaxis |
The third axis number when |
cex |
The parameter that specifies the size of character labels of points in graphical displays. By default, it is equal to 1. |
cex.lab |
The parameter |
prop |
The scaling parameter for specifying the limits of the plotting area. By default, it is equal to 1. |
plot3d |
The logical parameter specifies whether a 3D plot is to be included
in the output or not. By default, |
plotind |
The logical parameter specifies whether a plot of individuals is to be included
in the output or not. By default, |
M |
The number of axes |
... |
Further arguments passed to or from other methods. |
Details
It produces classical graphical displays. Further when catype
is equal to "omca"
,
the individual clusters are portrayed.
Author(s)
Rosaria Lombardo and Eric J Beh
References
Lombardo R and Meulman JJ (2010) Journal of Classification, 27, 191-210.
Beh EJ Lombardo R (2014) Correspondence Analysis, Theory, Practice and New Strategies. Wiley
Examples
data(satisfaction)
res1=MCAvariants(satisfaction, catype = "mca", np=5)
plot(res1)
res2=MCAvariants(satisfaction, catype = "omca", np = 5, vordered=c(TRUE,TRUE,TRUE,TRUE,TRUE))
plot(res2)