compute_av {MCARtest} | R Documentation |
Compute the columnwise average of means/variances
Description
A function that computes \bar{\operatorname{av}}_j(\mu_{\mathbb{S}})
as defined in
Section 5 in Bordino and Berrett (2024), or
\bar{\operatorname{av}}_j(\sigma^2_{\mathbb{S}})
as defined in Section 2 in
Bordino and Berrett (2024). The sequence of means/variances, and the
sequence of patterns, are calculated with getSigmaS
.
Usage
compute_av(type, X)
Arguments
type |
If set equal to "mean", computes |
X |
The whole dataset with missing values. |
Value
The value of \bar{\operatorname{av}}_j(\sigma^2_{\mathbb{S}})
or
\bar{\operatorname{av}}_j(\mu_{\mathbb{S}})
.
References
Bordino A, Berrett TB (2024). “Tests of Missing Completely At Random based on sample covariance matrices.” arXiv preprint arXiv:2401.05256.
Examples
library(MASS)
d = 3
n = 200
SigmaS=list() #Random 2x2 correlation matrices (necessarily consistent)
for(j in 1:d){
x=runif(2,min=-1,max=1); y=runif(2,min=-1,max=1); SigmaS[[j]]=cov2cor(x%*%t(x) + y%*%t(y))
}
X = data.frame(matrix(nrow = 3*n, ncol = 3))
X[1:n, c(1,2)] = mvrnorm(n, c(0,0), SigmaS[[1]])
X[(n+1):(2*n), c(2, 3)] = mvrnorm(n, c(0,0), SigmaS[[2]])
X[(2*n+1):(3*n), c(1, 3)] = mvrnorm(n, c(0,0), SigmaS[[3]])
X = as.matrix(X)
xxx = get_SigmaS(X)$patterns
compute_av("var", X)
compute_av("mean", X)