computeR {MCARtest} | R Documentation |
A function computing the incompatibility index for sequences of correlation matrices
Description
A function solving a SDP problem to compute the incompatibility index R()
for a sequence of
correlation matrices, as defined in Bordino and Berrett (2024).
Writes the SDP problem in standard primal form, and uses csdp
to solve this.
Usage
computeR(patterns = list(), SigmaS = list())
Arguments
patterns |
A vector with all the patterns in |
SigmaS |
The sequence of correlation matrices |
Value
The value of R()
, in the interval [0,1]
.
The optimal X_\mathbb{S}
for the primal problem.
The sequence of matrices X_\mathbb{S}^{0}
as defined in Bordino and Berrett (2024).
The optimal \Sigma
for the dual problem.
The sequence of correlation matrices \Sigma_\mathbb{S}
in input.
References
Bordino A, Berrett TB (2024). “Tests of Missing Completely At Random based on sample covariance matrices.” arXiv preprint arXiv:2401.05256.
Examples
d = 3
SigmaS=list() #Random 2x2 correlation matrices (necessarily consistent)
for(j in 1:d){
x=runif(2,min=-1,max=1); y=runif(2,min=-1,max=1)
SigmaS[[j]]=cov2cor(x%*%t(x) + y%*%t(y))
}
result = computeR(list(c(1,2),c(2,3), c(1,3)), SigmaS = SigmaS)
result$R