MCAR_meancovTest {MCARtest} | R Documentation |
Carry out a test of MCAR using first and second moments.
Description
This is the implementation of Algorithm 1 in Bordino and Berrett (2024).
Usage
MCAR_meancovTest(X, alpha, B)
Arguments
X |
The dataset with incomplete data. |
alpha |
The nominal level of the test. |
B |
The bootstrap sample |
Value
A Boolean, where TRUE stands for reject MCAR. This is found as outlined in Section 5.2 in Bordino and Berrett (2024).
References
Bordino A, Berrett TB (2024). “Tests of Missing Completely At Random based on sample covariance matrices.” arXiv preprint arXiv:2401.05256.
Examples
library(MASS)
alpha = 0.05
B = 20
m = 500
SigmaS=list() #Random 2x2 correlation matrices (necessarily consistent)
for(j in 1:3){
x=runif(2,min=-1,max=1); y=runif(2,min=-1,max=1)
SigmaS[[j]]=cov2cor(x%*%t(x) + y%*%t(y))
}
X1 = mvrnorm(m, c(0,0), SigmaS[[1]])
X2 = mvrnorm(m, c(0,0), SigmaS[[2]])
X3 = mvrnorm(m, c(0,0), SigmaS[[3]])
columns = c("X1","X2","X3")
X = data.frame(matrix(nrow = 3*m, ncol = 3))
X[1:m, c("X1", "X2")] = X1
X[(m+1):(2*m), c("X2", "X3")] = X2
X[(2*m+1):(3*m), c("X1", "X3")] = X3
X = as.matrix(X)
MCAR_meancovTest(X, alpha, B)
[Package MCARtest version 1.2.1 Index]