ss.aipe.src.sensitivity {MBESS} | R Documentation |
Sensitivity analysis for sample size planing from the Accuracy in Parameter Estimation Perspective for the standardized regression coefficient
Description
Performs a sensitivity analysis when planning sample size from the Accuracy in Parameter Estimation Perspective for the standardized regression coefficient.
Usage
ss.aipe.src.sensitivity(True.Var.Y = NULL, True.Cov.YX = NULL,
True.Cov.XX = NULL, Estimated.Var.Y = NULL, Estimated.Cov.YX = NULL,
Estimated.Cov.XX = NULL, Specified.N = NULL, which.predictor = 1,
w = NULL, Noncentral = TRUE, Standardize = TRUE, conf.level = 0.95,
degree.of.certainty = NULL, assurance=NULL, certainty=NULL,
G = 1000, print.iter = TRUE)
Arguments
True.Var.Y |
Population variance of the dependent variable (Y) |
True.Cov.YX |
Population covariances vector between the p predictor variables and the dependent variable (Y) |
True.Cov.XX |
Population covariance matrix of the p predictor variables |
Estimated.Var.Y |
Estimated variance of the dependent variable (Y) |
Estimated.Cov.YX |
Estimated covariances vector between the p predictor variables and the dependent variable (Y) |
Estimated.Cov.XX |
Estimated Population covariance matrix of the p predictor variables |
Specified.N |
Directly specified sample size (instead of using |
which.predictor |
identifies which of the p predictors is of interest |
w |
desired confidence interval width for the regression coefficient of interest |
Noncentral |
specify with a |
Standardize |
specify with a |
conf.level |
desired level of confidence for the computed interval (i.e., 1 - the Type I error rate) |
degree.of.certainty |
degree of certainty that the obtained confidence interval will be sufficiently narrow |
assurance |
an alias for |
certainty |
an alias for |
G |
the number of generations/replication of the simulation study within the function |
print.iter |
specify with a |
Details
Direct specification of True.Rho.YX
and True.RHO.XX
is necessary, even if one is interested in
a single regression coefficient, so that the covariance/correlation structure can be specified when
the simulation study within the function runs.
Value
Results |
a matrix containing the empirical results from each of the |
Specifications |
a list of the input specifications and the required sample size |
Summary.of.Results |
summary values for the results of the sensitivity analysis (simulation study) given the input specification |
Note
Note that when True.Rho.YX=Estimated.Rho.YX
and True.RHO.XX=Estimated.RHO.XX
,
the results are not literally from a sensitivity analysis, rather the function performs a standard simulation
study. A simulation study can be helpful in order to determine if the sample size procedure
under or overestimates necessary sample size.
See ss.aipe.reg.coef.sensitivity
in MBESS for more details.
Author(s)
Ken Kelley (University of Notre Dame; KKelley@ND.Edu)
References
Kelley, K. & Maxwell, S. E. (2003). Sample size for Multiple Regression: Obtaining regression coefficients that are accurate, not simply significant.Psychological Methods, 8, 305–321.
See Also
ss.aipe.reg.coef.sensitivity
, ss.aipe.rc.sensitivity
,
ss.aipe.reg.coef
, ci.reg.coef