ss.aipe.smd {MBESS} | R Documentation |
Sample size planning for the standardized mean difference from the Accuracy in Parameter Estimation (AIPE) perspective
Description
A function to calculate the appropriate sample size for the standardized mean difference such that
the expected value of the confidence interval is sufficiently narrow, optionally with a
degree.of.certainty
.
Usage
ss.aipe.smd(delta, conf.level, width, which.width="Full",
degree.of.certainty=NULL, assurance=NULL, certainty=NULL, ...)
Arguments
delta |
the population value of the standardized mean difference |
conf.level |
the desired degree of confidence (i.e., 1-Type I error rate) |
width |
desired width of the specified (i.e., |
which.width |
the width that the |
degree.of.certainty |
parameter to ensure confidence interval width with a specified degree of certainty |
assurance |
an alias for |
certainty |
an alias for |
... |
for modifying parameters of functions this function calls upon |
Value
Returns the necessary sample size per group in order to achieve the desired degree of accuracy (i.e., the sufficiently narrow confidence interval).
Warning
Finding sample size for lower and uppper confidence limits is approximate, but very close to being exact. The pt()
function is limited to accurate values
when the the noncentral parameter is less than 37.62.
Note
The function ss.aipe.smd
is the preferred function, and is the one that is recommended for widespread use.
The functions ss.aipe.smd.lower
, ss.aipe.smd.upper
and
ss.aipe.smd.full
are called from the ss.aipe.smd
function.
Author(s)
Ken Kelley (University of Notre Dame; KKelley@ND.Edu)
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions, Educational and Psychological Measurement, 61, 532–574.
Hedges, L. V. (1981). Distribution theory for Glass's Estimator of effect size and related estimators. Journal of Educational Statistics, 2, 107–128.
Kelley, K. (2005). The effects of nonnormal distributions on confidence intervals around the standardized mean difference: Bootstrap and parametric confidence intervals, Educational and Psychological Measurement, 65, 51–69.
Kelley, K., Maxwell, S. E., & Rausch, J. R. (2003). Obtaining Power or Obtaining Precision: Delineating Methods of Sample-Size Planning, Evaluation and the Health Professions, 26, 258–287.
Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference: Accuracy in Parameter Estimation via narrow confidence intervals. Psychological Methods, 11(4), 363–385.
Steiger, J. H., & Fouladi, R. T. (1997) Noncentrality interval estimation and the evaluation of statistical methods. In L. L. Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if there where no significance tests? (pp. 221-257). Mahwah, NJ: Lawrence Erlbaum.
See Also
smd
, smd.c
, ci.smd
, ci.smd.c
,
conf.limits.nct
, power.t.test
, ss.aipe.smd.lower
,
ss.aipe.smd.upper
, ss.aipe.smd.full
Examples
# ss.aipe.smd(delta=.5, conf.level=.95, width=.30)
# ss.aipe.smd(delta=.5, conf.level=.95, width=.30, degree.of.certainty=.8)
# ss.aipe.smd(delta=.5, conf.level=.95, width=.30, degree.of.certainty=.95)