ss.aipe.sem.path {MBESS} | R Documentation |
Sample size planning for SEM targeted effects
Description
Plan sample size for structural equation models so that the confidence intervals for the model parameters of interest are sufficiently narrow
Usage
ss.aipe.sem.path(model, Sigma, desired.width, which.path,
conf.level = 0.95, assurance = NULL, ...)
Arguments
model |
an RAM (reticular action model; e.g., McArdle & McDonald, 1984) specification of a structural equation model, and should be of class |
Sigma |
estimated population covariance matrix of the manifest variables |
desired.width |
desired confidence interval width for the model parameter of interest |
which.path |
the name of the model parameter of interest, presented in double quotation marks |
conf.level |
confidence level (i.e., 1- Type I error rate) |
assurance |
the assurance that the confidence interval obtained in a particular study will be no wider than desired (must be |
... |
allows one to potentially include parameter values for inner functions |
Details
This function implements the sample size planning methods proposed in Lai and Kelley (2010). It depends on the
function sem
in the sem
package to calculate the expected information matrix, and uses the same notation to specify SEM
models as does sem
. Please refer to sem
for more detailed documentations
about model specification, the RAM notation, and model fitting techniques. For technical discussion
on how to obtain the model implied covariance matrix in the RAM notation given model parameters, see McArdle and McDonald (1984).
Value
parameters |
the names of the model parameters |
path.index |
the index of the model parameter of interest |
sample.size |
the necessary sample size calculated |
obs.vars |
the names of the observed variables |
var.theta.j |
the population variance of the model parameter of interest at the calculated sample size |
Author(s)
Keke Lai (University of California–Merced)
References
Fox, J. (2006). Structural equation modeling with the sem package in R. Structural Equation Modeling, 13, 465–486.
Lai, K., & Kelley, K. (in press). Accuracy in parameter estimation for targeted effects in structural equation modeling: Sample size planning for narrow confidence intervals. Psychological Methods.
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the reticular action model. British Journal of Mathematical and Statistical Psychology, 37, 234–251.
See Also
sem
; specify.model
; theta.2.Sigma.theta
; ss.aipe.sem.path.sensitiv
Examples
## Not run:
# Suppose the model of interest is Model 2 in the simulation study
# in Lai and Kelley (2010), and the goal is to obtain a 95% confidence
# interval for 'beta21' no wider than 0.3. The necessary sample size
# can be calculated as follows.
library(sem)
# specify a model object in the RAM notation
model.2<-specifyModel()
xi1 -> y1, lambda1, 1
xi1 -> y2, NA, 1
xi1 -> y3, lambda2, 1
xi1 -> y4, lambda3, 0.3
eta1 -> y4, lambda4, 1
eta1 -> y5, NA, 1
eta1 -> y6, lambda5, 1
eta1 -> y7, lambda6, 0.3
eta2 -> y6, lambda7, 0.3
eta2 -> y7, lambda8, 1
eta2 -> y8, NA, 1
eta2 -> y9, lambda9, 1
xi1 -> eta1, gamma11, 0.6
eta1 -> eta2, beta21, 0.6
xi1 <-> xi1, phi11, 0.49
eta1 <-> eta1, psi11, 0.3136
eta2 <-> eta2, psi22, 0.3136
y1 <-> y1, delta1, 0.51
y2 <-> y2, delta2, 0.51
y3 <-> y3, delta3, 0.51
y4 <-> y4, delta4, 0.2895
y5 <-> y5, delta5, 0.51
y6 <-> y6, delta6, 0.2895
y7 <-> y7, delta7, 0.2895
y8 <-> y8, delta8, 0.51
y9 <-> y9, delta9, 0.51
# to inspect the specified model
model.2
# one way to specify the population covariance matrix is to first
# specify path coefficients and then calcualte the model-implied
# covariance matrix
theta <- c(1, 1, 0.3, 1,1, 0.3, 0.3, 1, 1, 0.6, 0.6,
0.49, 0.3136, 0.3136, 0.51, 0.51, 0.51, 0.2895, 0.51, 0.2895, 0.2895, 0.51, 0.51)
names(theta) <- c("lambda1","lambda2","lambda3",
"lambda4","lambda5","lambda6","lambda7","lambda8","lambda9",
"gamma11", "beta21",
"phi11", "psi11", "psi22",
"delta1","delta2","delta3","delta4","delta5","delta6","delta7",
"delta8","delta9")
res<-theta.2.Sigma.theta(model=model.2, theta=theta,
latent.vars=c("xi1", "eta1","eta2"))
Sigma.theta <- res$Sigma.theta
# thus 'Sigma.theta' is the input covariance matrix for sample size
# planning procedure.
# the necessary sample size can be calculated as follows.
# ss.aipe.sem.path(model=model.2, Sigma=Sigma.theta,
# desired.width=0.3, which.path="beta21")
## End(Not run)