ci.sm {MBESS} | R Documentation |
Confidence Interval for the Standardized Mean
Description
Function to obtain the exact confidence interval for the standardized mean.
Usage
ci.sm(sm = NULL, Mean = NULL, SD = NULL, ncp = NULL, N = NULL,
conf.level = 0.95, alpha.lower = NULL, alpha.upper = NULL, ...)
Arguments
sm |
standardized mean |
Mean |
mean |
SD |
standard deviation |
ncp |
noncentral parameter |
N |
sample size |
conf.level |
confidence interval coverage (i.e., 1 - Type I error rate); default is .95 |
alpha.lower |
Type I error for the lower confidence limit |
alpha.upper |
Type I error for the upper confidence limit |
... |
allows one to potentially include parameter values for inner functions |
Details
The user must specify the standardized mean in one and only one of the three ways: a) mean and standard deviation (Mean
and SD
), b) standardized
mean (sm
), and c) noncentral parameter (ncp
). The confidence level must be specified in one of following two ways: using confidence interval
coverage (conf.level
), or lower and upper confidence limits (alpha.lower
and alpha.upper
).
This function uses the exact confidence interval method based on noncentral t-distributions. The confidence interval for noncentral t-parameter can be obtained from the conf.limits.nct
function in MBESS.
Value
Lower.Conf.Limit.Standardized.Mean |
lower confidence limit of the standardized mean |
Standardized.Mean |
standardized mean |
Upper.Conf.Limit.Standardized.Mean |
upper confidence limit of the standardized mean |
Note
The standardized mean is the mean divided by the standard deviation.
Author(s)
Ken Kelley (University of Notre Dame; KKelley@ND.Edu)
References
Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, application, and implementation. Journal of Statistical Software, 20 (8), 1–24.
Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of statistical methods. In L. L. Harlow, S. A. Mulaik, & J.H. Steiger (Eds.), What if there were no significance tests? (pp. 221–257). Mahwah, NJ: Lawrence Erlbaum.
See Also
conf.limits.nct
Examples
ci.sm(sm=2.037905, N=13, conf.level=.95)
ci.sm(Mean=30, SD=14.721, N=13, conf.level=.95)
ci.sm(ncp=7.347771, N=13, conf.level=.95)
ci.sm(sm=2.037905, N=13, alpha.lower=.05, alpha.upper=0)
ci.sm(Mean=50, SD=10, N=25, conf.level=.95)