MBCp {MBC} | R Documentation |
Multivariate bias correction (Pearson correlation)
Description
Multivariate bias correction that matches marginal
distributions using QDM
and the Pearson correlation
dependence structure following Cannon (2016).
Usage
MBCp(o.c, m.c, m.p, iter=20, cor.thresh=1e-4,
ratio.seq=rep(FALSE, ncol(o.c)), trace=0.05,
trace.calc=0.5*trace, jitter.factor=0, n.tau=NULL,
ratio.max=2, ratio.max.trace=10*trace, ties='first',
qmap.precalc=FALSE, silent=FALSE, subsample=NULL,
pp.type=7)
Arguments
o.c |
matrix of observed samples during the calibration period. |
m.c |
matrix of model outputs during the calibration period. |
m.p |
matrix of model outputs during the projected period. |
iter |
maximum number of algorithm iterations. |
cor.thresh |
if greater than zero, a threshold indicating the change in magnitude of Pearson correlations required for convergence. |
ratio.seq |
vector of logical values indicating if samples are of a ratio quantity (e.g., precipitation). |
trace |
numeric values indicating thresholds below which values of a ratio quantity (e.g., |
trace.calc |
numeric values of thresholds used internally when handling of exact zeros; defaults to one half of |
jitter.factor |
optional strength of jittering to be applied when quantities are quantized. |
n.tau |
number of quantiles used in the quantile mapping; |
ratio.max |
numeric values indicating the maximum proportional changes allowed for ratio quantities below the |
ratio.max.trace |
numeric values of trace thresholds used to constrain the proportional change in ratio quantities to |
ties |
method used to handle ties when calculating ordinal ranks. |
qmap.precalc |
logical value indicating if |
silent |
logical value indicating if algorithm progress should be reported. |
subsample |
use |
pp.type |
type of plotting position used in |
Value
a list of with elements consisting of:
mhat.c |
matrix of bias corrected |
mhat.p |
matrix of bias corrected |
References
Cannon, A.J., 2016. Multivariate bias correction of climate model output: Matching marginal distributions and inter-variable dependence structure. Journal of Climate, 29:7045-7064. doi:10.1175/JCLI-D-15-0679.1
Cannon, A.J., S.R. Sobie, and T.Q. Murdock, 2015. Bias correction of simulated precipitation by quantile mapping: How well do methods preserve relative changes in quantiles and extremes? Journal of Climate, 28:6938-6959. doi:10.1175/JCLI-D-14-00754.1