robustSE {MAd} | R Documentation |
Robust standard error
Description
When the correlation between dependent effect sizes are unknown, one approach is to conduct the meta-analysis by assuming that the effect sizes are independent. Then, Hedges et al. (2010) robust standard error procedure can be calculated to adjust for dependence.
Usage
robustSE(model, cluster=NULL, CI=.95, digits=3)
Arguments
model |
omnibus or moderator model object fitted from mareg() function. |
cluster |
Name of variable where the dependencies are present. This will typically be the variable for study id where |
CI |
Confidence interval. Defaults to .95. |
digits |
Number of digits to output. Defaults to 3. |
Value
estimate |
Meta-regression coefficient estimate. |
se |
Adjusted Standard error of the estimate coefficient. |
t |
t-value. |
ci.l |
Adjusted Lower 95% confidence interval. |
ci.u |
Adjusted Upper 95% confidence interval. |
p |
p-value. |
Author(s)
Mike Cheung with modifications by AC Del Re
References
Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1(1), 39-65. doi:10.1002/jrsm.5
Cheung, M.W.L. (2012). metaSEM: An R package for meta-analysis using structural equation modeling. Manuscript submitted for publication.
See Also
Examples
# install metafor
# install.packages('metafor', dependencies = TRUE)
# Sample data
id<-c(1:20)
n.1<-c(10,20,13,22,28,12,12,36,19,12,36,75,33,121,37,14,40,16,14,20)
n.2 <- c(11,22,10,20,25,12,12,36,19,11,34,75,33,120,37,14,40,16,10,21)
g <- c(.68,.56,.23,.64,.49,-.04,1.49,1.33,.58,1.18,-.11,1.27,.26,.40,.49,
.51,.40,.34,.42,1.16)
var.g <- c(.08,.06,.03,.04,.09,.04,.009,.033,.0058,.018,.011,.027,.026,.0040,
.049,.0051,.040,.034,.0042,.016)
mod<-factor(c(rep(c(1,1,2,3),5)))
mods2<-c(rep(1:5,4))
df<-data.frame(id, n.1,n.2, g, var.g,mod, mods2)
# Examples
# Adjusted SE
robustSE(mareg(g~ mod + mods2, var = var.g, method = "REML", data = df))