MAT-package {MAT} | R Documentation |
Multidimensional Adaptive Testing (MAT)
Description
MAT is a package to simulate Multidimensional Adaptive Testing (MAT) for the Multidimensional 3-Parameter Logistic (M3PL) Model as described in Segall (1996), Reckase (2009), and Mulder & van der Linden (2009).
Author(s)
Seung W. Choi and David R. King
Maintainer: Seung W. Choi <s-choi@northwestern.edu>
References
Choi, S. W., & King, D. R. (2015). R Package MAT: Simulation of multidimensional adaptive testing for dichotomous IRT models. Applied Psychological Measurement, 39(3), 239-240.
Segall, D. O. (1996). Multidimensional adaptive testing, Psychometrika, 61(2), 331-354
van der Linden, W. J. (1999). Multidimensional adaptive testing with a minimum error-variance criterion, Journal of Educational and Behavioral Statistics, 24(4), 398-412.
Mulder, J., & van der Linden, W. J. (2009). Multidimensional adaptive testing with optimal design criteria for item selection, Psychometrika, 74(2), 273-296.
Reckase, M. D. (2009). Multidimensional Item Response Theory. New York: Springer.
Examples
#load sample item parameters containing 180 items measuring three dimensions
data(sample.ipar)
#create a variance-covariance (correlation) matrix
vcv1<-diag(3); vcv1[lower.tri(vcv1,diag=FALSE)]<-c(.5,.6,.7)
#simulate item responses
resp1<-simM3PL(sample.ipar, vcv1, 3, n.simulee = 100)$resp
#specify target content distributions
target.content.dist1<-c(1/3,1/3,1/3)
#content category designations for items
content.cat1<-rep(1:3,rep(60,3))
#simulate multidimensional adaptive testing
MCAT.1<-MAT(sample.ipar,
resp1,
vcv1,
target.content.dist=target.content.dist1,
content.cat=content.cat1,
ncc=3,
p=3,
selectionMethod="A",
topN=1,
selectionType="FISHER",
stoppingCriterion="CONJUNCTIVE",
minNI=10,
maxNI=30)