.normalise |
Normalise a vector |
add_term |
Stepwise model construction and inspection |
as_complex |
Coerce to complex |
as_complex-method |
Coerce to complex |
avoid |
Avoid overlaps |
avoid-method |
Avoid overlaps |
bc |
Box-Cox transform |
bc_inv |
Box-Cox transform inverse |
Boston |
Boston |
box_cox |
Box-cox constructor function |
box_cox-method |
Box-cox constructor function |
Cars93 |
Cars93 |
cm2in |
Unit change functions |
default_test |
Guess the default test |
default_test.default |
Guess the default test |
default_test.glm |
Guess the default test |
default_test.glmerMod |
Guess the default test |
default_test.lm |
Guess the default test |
default_test.lmerMod |
Guess the default test |
default_test.multinom |
Guess the default test |
default_test.negbin |
Guess the default test |
default_test.polr |
Guess the default test |
drop_term |
Stepwise model construction and inspection |
eigen2 |
Generalized eigenvalue problem |
GIC |
Intermediate Information Criterion |
givens_orth |
Givens orthogonalisation |
gs_orth |
Gram-Schmidt orthogonalization |
gs_orth_modified |
Gram-Schmidt orthogonalization |
hr_levels |
#' @rdname kde_1d #' @export kernelBiweight <- function(x, mean = 0, sd = 1) h <- sqrt(7)*sd ifelse((z <- abs(x-mean)) < h, 15/16*(1 - (z/h)^2)^2/h, 0) |
hr_levels.default |
#' @rdname kde_1d #' @export kernelBiweight <- function(x, mean = 0, sd = 1) h <- sqrt(7)*sd ifelse((z <- abs(x-mean)) < h, 15/16*(1 - (z/h)^2)^2/h, 0) |
hr_levels.kde_2d |
#' @rdname kde_1d #' @export kernelBiweight <- function(x, mean = 0, sd = 1) h <- sqrt(7)*sd ifelse((z <- abs(x-mean)) < h, 15/16*(1 - (z/h)^2)^2/h, 0) |
in2cm |
Unit change functions |
in2mm |
Unit change functions |
in2usr |
Conversion functions for plotting |
in2usr-method |
Conversion functions for plotting |
kde_1d |
One-dimensional Kernel Density Estimate |
kde_2d |
A Two-dimensional Kernel Density Estimate |
lambda |
Find the box-cox transform exponent estimate |
lambda.box_cox |
Find the box-cox transform exponent estimate |
lambda.default |
Find the box-cox transform exponent estimate |
lambda.formula |
Find the box-cox transform exponent estimate |
lambda.lm |
Find the box-cox transform exponent estimate |
makepredictcall.normalise |
Method function for safe prediction |
mean_c |
Mean and variance for a circular sample |
mm2in |
Unit change functions |
plot.box_cox |
Box-cox constructor function |
plot.drop_term |
drop_term plot method |
plot.kde_1d |
One-dimensional Kernel Density Estimate |
plot.kde_2d |
A Two-dimensional Kernel Density Estimate |
print.box_cox |
Box-cox constructor function |
print.kde_1d |
One-dimensional Kernel Density Estimate |
print.kde_2d |
A Two-dimensional Kernel Density Estimate |
print.lambda |
Print method for Box-Cox objects |
quine |
quine |
step_AIC |
Stepwise model construction and inspection |
step_BIC |
Stepwise model construction and inspection |
step_down |
Naive backeward elimination |
step_GIC |
Stepwise model construction and inspection |
unitChange |
Unit change functions |
usr2in |
Conversion functions for plotting |
usr2in-method |
Conversion functions for plotting |
var_c |
Mean and variance for a circular sample |
vcovx |
Extended variance matrix |
vcovx.default |
Extended variance matrix |
vcovx.negbin |
Extended variance matrix |
which_tri |
Which in lower/upper triangle |
whiteside |
whiteside |
xy-class |
An S4 class to represent alternavive complex, matrix or list input forms. |
zq |
Standardisation functions for models |
zr |
Standardisation functions for models |
zs |
Standardisation functions for models |
zu |
Standardisation functions for models |