| IData-class {MAINT.Data} | R Documentation |
Class IData
Description
A data-array of interval-valued data is an array where each of the NObs rows, corresponding to each entity under analysis, contains the observed intervals of the NIVar descriptive variables.
Slots
MidP:A data-frame of the midpoints of the observed intervals
LogR:A data-frame of the logarithms of the ranges of the observed intervals
ObsNames:An optional vector of names assigned to the individual observations.
VarNames:An optional vector of names to be assigned to the Interval-valued Variables.
NObs:Number of entities under analysis (cases)
NIVar:Number of interval variables
NbMicroUnits:An integer vector with the number of micro data units by interval-valued observation (or an empty vector, if not applicable)
Methods
- show
signature(object = "IData"): show S4 method for the IData-class.- nrow
signature(x = "IData"): returns the number of statistical units (observations).- ncol
signature(x = "IData"): returns the number of of Interval-valued variables.- dim
signature(x = "IData"): returns a vector with the of number statistical units as first element, and the number of Interval-valued variables as second element.- rownames
signature(x = "IData"): returns the row (entity) names for an object of class IData.- colnames
signature(x = "IData"): returns column (variable) names for an object of class IData.- names
signature(x = "IData"): returns column (variable) names for an object of class IData.- MidPoints
signature(Sdt = "IData"): returns a data frame with MidPoints for an object of class IData.- LogRanges
signature(Sdt = "IData"): returns a data frame with LogRanges for an object of class IData.- Ranges
signature(Sdt = "IData"): returns an data frame with Ranges for an object of class IData.- NbMicroUnits
signature(Sdt = "IData"): returns an integer vector with the number of micro data units by interval-valued observation for an object of class IData.- head
signature(x = "IData"): head S4 method for the IData-class.- tail
signature(x = "IData"): tail S4 method for the IData-class.- plot
signature(x = "IData"): plot S4 methods for the IData-class.- mle
signature(x = "IData"): Maximum likelihood estimation.- fasttle
signature(x = "IData"): Fast trimmed maximum likelihood estimation.- fulltle
signature(x = "IData"): Exact trimmed maximum likelihood estimation.- RobMxtDEst
signature(x = "IData"): Robust estimation of distribution mixtures for interval-valued data.- MANOVA
signature(x = "IData"): MANOVA tests on the interval-valued data.- lda
signature(x = "IData"): Linear Discriminant Analysis using maximum likelihood parameter estimates of Gaussian mixtures.- qda
signature(x = "IData"): Quadratic Discriminant Analysis using maximum likelihood parameter estimates of Gaussian mixtures.- Roblda
signature(x = "IData"): Linear Discriminant Analysis using robust estimates of location and scatter.- Robqda
signature(x = "IData"): Quadratic Discriminant Analysis using robust estimates of location and scatter.- snda
signature(x = "IData"): Discriminant Analysis using maximum likelihood parameter estimates of SkewNormal mixtures.
Author(s)
Pedro Duarte Silva <psilva@porto.ucp.pt>
Paula Brito <mpbrito.fep.up.pt>
References
Azzalini, A. and Dalla Valle, A. (1996), The multivariate skew-normal distribution. Biometrika 83(4), 715–726.
Brito, P., Duarte Silva, A. P. (2012), Modelling Interval Data with Normal and Skew-Normal Distributions. Journal of Applied Statistics 39(1), 3–20.
Duarte Silva, A.P., Filzmoser, P. and Brito, P. (2017), Outlier detection in interval data. Advances in Data Analysis and Classification, 1–38.
Noirhomme-Fraiture, M., Brito, P. (2011), Far Beyond the Classical Data Models: Symbolic Data Analysis. Statistical Analysis and Data Mining 4(2), 157–170.
See Also
IData, AgrMcDt, mle, fasttle, fulltle, RobMxtDEst,
MANOVA, lda, qda, Roblda, Robqda