LowRankQP {LowRankQP} | R Documentation |
Solve Low Rank Quadratic Programming Problems
Description
This routine implements a primal-dual interior point method solving quadratic programming problems of the form
min | d^T alpha + 1/2 alpha^T H alpha |
such that | A alpha = b |
0 <= alpha <= u |
|
with dual
min | 1/2 alpha^T H alpha + beta^T b + xi^T u |
such that | H alpha + c + A^T beta - zeta + xi = 0 |
xi, zeta >= 0 |
|
where H=V
if V
is square and H=VV^T
otherwise.
Usage
LowRankQP(Vmat,dvec,Amat,bvec,uvec,method="PFCF",verbose=FALSE,niter=200,epsterm=1.0E-8)
Arguments
Vmat |
matrix appearing in the quadratic function to be minimized. |
dvec |
vector appearing in the quadratic function to be minimized. |
Amat |
matrix defining the constraints under which we want to minimize the quadratic function. |
bvec |
vector holding the values of |
uvec |
vector holding the values of |
method |
Method used for inverting H+D where D is full rank diagonal.
If
If
|
verbose |
Display iterations and termination statistics. |
niter |
Number of iteration to perform. |
epsterm |
Termination tolerance. See equation (12) of Ormerod et al (2008). |
Value
a list with the following components:
alpha |
vector containing the solution of the quadratic programming problem. |
beta |
vector containing the solution of the dual of quadratic programming problem. |
xi |
vector containing the solution of the dual quadratic programming problem. |
zeta |
vector containing the solution of the dual quadratic programming problem. |
References
Ormerod, J.T., Wand, M.P. and Koch, I. (2008). Penalised spline support vector classifiers: computational issues, Computational Statistics, 23, 623-641.
Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
Ferris, M. C. and Munson, T. S. (2003). Interior point methods for massive support vector machines. SIAM Journal on Optimization, 13, 783-804.
Fine, S. and Scheinberg, K. (2001). Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2, 243-264.
B. Sch\"olkopf and A. J. Smola. (2002). Learning with Kernels. The MIT Press, Cambridge, Massachusetts.
Examples
library(LowRankQP)
# Assume we want to minimize: (0 -5 0 0 0 0) %*% alpha + 1/2 alpha[1:3]^T alpha[1:3]
# under the constraints: A^T alpha = b
# with b = (-8, 2, 0 )^T
# and (-4 2 0 )
# A = (-3 1 -2 )
# ( 0 0 1 )
# (-1 0 0 )
# ( 0 -1 0 )
# ( 0 0 -1 )
# alpha >= 0
#
# (Same example as used in quadprog)
#
# we can use LowRankQP as follows:
Vmat <- matrix(0,6,6)
diag(Vmat) <- c(1, 1,1,0,0,0)
dvec <- c(0,-5,0,0,0,0)
Amat <- matrix(c(-4,-3,0,-1,0,0,2,1,0,0,-1,0,0,-2,1,0,0,-1),6,3)
bvec <- c(-8,2,0)
uvec <- c(100,100,100,100,100,100)
LowRankQP(Vmat,dvec,t(Amat),bvec,uvec,method="CHOL")
# Now solve the same problem except use low-rank V
Vmat <- matrix(c(1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0),6,3)
dvec <- c(0,-5,0,0,0,0)
Amat <- matrix(c(-4,-3,0,-1,0,0,2,1,0,0,-1,0,0,-2,1,0,0,-1),6,3)
bvec <- c(-8,2,0)
uvec <- c(100,100,100,100,100,100)
LowRankQP(Vmat,dvec,t(Amat),bvec,uvec,method="SMW")