ARRLS.sim {LongMemoryTS} | R Documentation |
Simulation of Autoregressive Random Level Shift processes.
Description
Simulation of a AR-RLS process as discussed in and Xu and Perron (2014).
Usage
ARRLS.sim(T, phi, sig.shifts, prob, sig.noise = 0, const = 0,
trend = 0, burnin = 100)
Arguments
T |
length of the desired series. |
phi |
autoregressive parameter that determines the persistence of the shifts.
For |
sig.shifts |
standard deviation of the shifts. |
prob |
shift probability. For rare shifts p*/T, where p* is the expected number of shifts in the sample. |
sig.noise |
standard deviation of the noise component. Default is |
const |
mean of the process. Default is |
trend |
trend of the process. Default is |
burnin |
length of the burnin period used. Default is |
Details
add details here
Author(s)
Christian Leschinski
References
Xu, J. and Perron, P. (2014): Forecasting return volatility: Level shifts with varying jump probability and mean reversion. International Journal of Forecasting, 30, pp. 449-463.
Examples
ts.plot(ARRLS.sim(T=500,phi=0.5, sig.shift=1, prob=0.05), ylab=expression(X[t]))