Log-Concave Density Estimation in Arbitrary Dimensions


[Up] [Top]

Documentation for package ‘LogConcDEAD’ version 1.6-9

Help Pages

LogConcDEAD-package Computes a log-concave (maximum likelihood) estimator for i.i.d. data in any number of dimensions
cov.LogConcDEAD Compute the covariance matrix of a log-concave maximum likelihood estimator
dlcd Evaluation of a log-concave maximum likelihood estimator at a point
dmarglcd Evaluate the marginal of multivariate log-concave maximum likelihood estimators at a point
dslcd Evaluation of a smoothed log-concave maximum likelihood estimator at given points
EMmixlcd Estimate the mixture proportions and component densities using EM algorithm
getinfolcd Construct an object of class LogConcDEAD
getweights Find appropriate weights for likelihood calculations
hatA Compute the smoothing matrix of the smoothed log-concave maximum likelihood estimator
interactive2D A GUI for classification in two dimensions using smoothed log-concave
interplcd Evaluate the log-concave maximum likelihood estimator of 2-d data on a grid for plotting
interpmarglcd Finds marginals of multivariate logconcave maximum likelihood estimators by integrating
LogConcDEAD Computes a log-concave (maximum likelihood) estimator for i.i.d. data in any number of dimensions
mlelcd Compute the maximum likelihood estimator of a log-concave density
plot.LogConcDEAD Plot a log-concave maximum likelihood estimator
print.LogConcDEAD Summarizing log-concave maximum likelihood estimator
rlcd Sample from a log-concave maximum likelihood estimate
rslcd Sample from a smoothed log-concave maximum likelihood estimate
summary.LogConcDEAD Summarizing log-concave maximum likelihood estimator