Lmoments {Lmoments} | R Documentation |
L-moments
Description
Calculates sample L-moments, L-coefficients and covariance matrix of L-moments.
Usage
Lmoments(data, rmax = 4, na.rm = FALSE, returnobject = FALSE, trim = c(0, 0))
Lcoefs(data, rmax = 4, na.rm = FALSE, trim = c(0, 0))
Lmomcov(data, rmax = 4, na.rm = FALSE)
Lmoments_calc(data, rmax = 4)
Lmomcov_calc(data, rmax = 4)
shiftedlegendre(rmax)
Arguments
data |
matrix or data frame. |
rmax |
maximum order of L-moments. |
na.rm |
a logical value indicating whether 'NA' values should be removed before the computation proceeds. |
returnobject |
a logical value indicating whether a list object should be returned instead of an array of L-moments. |
trim |
c(0, 0) for ordinary L-moments and c(1, 1) for trimmed (t = 1) L-moments |
Value
Lmoments
returns an array of L-moments containing a row for each variable in data, or if returnobject=TRUE,
a list containing
lambdas |
an array of L-moments |
ratios |
an array of mean, L-scale and L-moment ratios |
trim |
the value of the parameter 'trim' |
source |
a string with value "Lmoments" or "t1lmoments". |
Lcoefs
returns an array of L-coefficients (mean, L-scale, L-skewness, L-kurtosis, ...)
containing a row for each variable in data.
Lmomcov
returns the covariance matrix of L-moments or a list of covariance matrices if the input has multiple columns.
The numerical accuracy of the results decreases with increasing rmax
.
With rmax > 5
, a warning is thrown, as the numerical accuracy of the results is likely less than sqrt(.Machine$double.eps)
.
shiftedlegendre
returns a matrix of the coefficients of the shifted Legendre polynomials up to a given order.
Note
Functions Lmoments
and Lcoefs
calculate trimmed L-moments if you specify trim = c(1, 1)
.
Lmoments_calc
and Lmomcov_calc
are internal C++ functions called by Lmoments
and Lmomcov
.
The direct use of these functions is not recommended.
Author(s)
Juha Karvanen juha.karvanen@iki.fi, Santeri Karppinen
References
Karvanen, J. 2006. Estimation of quantile mixtures via L-moments and trimmed L-moments, Computational Statistics & Data Analysis 51, (2), 947–959. http://www.bsp.brain.riken.jp/publications/2006/karvanen_quantile_mixtures.pdf.
Elamir, E. A., Seheult, A. H. 2004. Exact variance structure of sample L-moments, Journal of Statistical Planning and Inference 124 (2) 337–359.
Hosking, J. 1990. L-moments: Analysis and estimation distributions using linear combinations of order statistics, Journal of Royal Statistical Society B 52, 105–124.
See Also
t1lmoments
for trimmed L-moments,
dnormpoly
, lmom2normpoly4
and covnormpoly4
for the normal-polynomial quantile mixture
and package lmomco for additional L-moment functions
Examples
#Generates a sample 500 observations from the normal-polynomial quantile mixture,
#calculates the L-moments and their covariance matrix,
#estimates parameters via L-moments and
#plots the true pdf and the estimated pdf together with the histogram of the data.
true_params<-lmom2normpoly4(c(0,1,0.2,0.05));
x<-rnormpoly(500,true_params);
lmoments<-Lmoments(x);
lmomcov<-Lmomcov(x);
estim_params<-lmom2normpoly4(lmoments);
hist(x,30,freq=FALSE)
plotpoints<-seq(min(x)-1,max(x)+1,by=0.01);
lines(plotpoints,dnormpoly(plotpoints,estim_params),col='red');
lines(plotpoints,dnormpoly(plotpoints,true_params),col='blue');