emp_GASP_plot {LinkedGASP} | R Documentation |
Empirical linked GASP plot
Description
Function plots the empirical true linked emulator in case of one-dimensional input.
Usage
emp_GASP_plot(em, fun, data, emul_type, exp.ql, exp.qu, labels, ylab, xlab, ylim,
col_CI_area, col_points, col_fun, col_mean, points)
Arguments
em |
the returned output from the function eval_type1_GASP(...) or eval_type2_GASP(...). |
fun |
Simulator function. Currently only one-dimensional input is supported. |
data |
Training data and smoothness. The same as supplied to eval_GASP_RFP(...) for construction of the GASP. |
emul_type |
A text string which provides description of an emulator. |
exp.ql |
Quantile 0.025 |
exp.qu |
Quantile 0.975 |
labels |
As in standard R plot. |
ylab |
As in standard R plot. |
xlab |
As in standard R plot. |
ylim |
As in standard R plot. |
col_CI_area |
Color of a credible area. |
col_points |
Color of the training points. |
col_fun |
Color of a simulator function. |
col_mean |
Color of the emulator of the GASP mean. |
points |
Default is FALSE. To plot or not the training points. |
Value
Plot
Author(s)
Ksenia N. Kyzyurova, kseniak.ucoz.net
Examples
## Function f1 is a simulator
f1<-function(x){sin(pi*x)}
## Function f2 is a simulator
f2<-function(x){cos(5*x)}
## Function f2(f1) is a simulator of a composite model
f2f1 <- function(x){f2(f1(x))}
## One-dimensional inputs are x1
x1 <- seq(-1,1,.37)
## The following contains the list of data inputs (training) and outputs (fD) together with the
## assumed fixed smoothness of a computer model output.
data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99)
## Evaluation of GASP parameters
f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE)
## Evaluate the emulator
xn = seq(-1,1,.01)
GASP_type2_f1 <- eval_type2_GASP(as.matrix(xn),f1_MLEs)
par(mfrow = c(1,1))
par(mar = c(6.1, 6.1, 5.1, 2.1))
ylim = c(-1.5,1.5)
GASP_plot(GASP_type2_f1,f1,data.f1,"Type 2 GASP",ylab = " f",xlab = "x",
ylim = ylim, plot_training = TRUE)
s = GASP_type2_f1$mu
s.var = diag(GASP_type2_f1$var)
x2 = seq(-0.95,0.95,length = 6)#f1(x1)
data.f2 <- list(training = x2,fD = f2(x2), smooth = 2) # linking requires this emulator
## to have smoothness parameter equal to 2
f2_MLEs = eval_GASP_RFP(data.f2,list(function(x){x^0},function(x){x^1}),1,FALSE)
GASP_type1_f2 <- eval_type1_GASP(as.matrix(seq(-3.5,3.5,.01)),f2_MLEs)
GASP_type2_f2 <- eval_type2_GASP(as.matrix(seq(-1,1,.01)),f2_MLEs)
TGASP_f2 <- eval_TGASP(as.matrix(seq(-1,1,.01)),f2_MLEs)
ylim = c(-1.5,1.5)
# labels = c(expression(phantom(x)*phantom(x)*phantom(x)*f(x[1])),
# expression(f(x[2])*phantom(x)*phantom(x)*phantom(x)),
# expression(f(x[3])),expression(f(x[4])),
# expression(f(x[5])),expression(f(x[6])))
par(mar = c(6.1, 6.1, 5.1, 2.1))
GASP_plot(GASP_type2_f2,f2,data.f2, "Type 2 GASP",labels = x2,xlab= "z",ylab = " g",
ylim = ylim,plot_training = TRUE)
le <- link(f1_MLEs, f2_MLEs, as.matrix(xn))
## Construct an empirical emulator
n.samples = 100
em2.runs<-mat.or.vec(n.samples,length(s))
library(MASS)
for(i in 1:n.samples) {
GASP = eval_type2_GASP(as.matrix(mvrnorm(1,s,diag(s.var))),f2_MLEs)
em2.runs[i,] <- mvrnorm(1,GASP$mu, GASP$var)
}
## Plot the empirical GASP emulator
data.f2f1 <- list(training = x1,fD = f2f1(x1), smooth = 2)
par(mar = c(6.1, 6.1, 5.1, 2.1))
emp_GASP_plot(le$em2,f2f1,data.f2f1,"Linked",apply(em2.runs,2,quantile,probs = 0.025),
apply(em2.runs,2,quantile,probs = 0.975),
ylab = expression("g" ~ scriptscriptstyle(O) ~ "f"),xlab = "x, input",ylim = ylim)
[Package LinkedGASP version 1.0 Index]