TGASPmetrics {LinkedGASP} | R Documentation |
Performance measurement of a T-GASP
Description
Evaluates frequentist performance of a T-GASP.
Usage
TGASPmetrics(TGASP, true_output, ref_output)
Arguments
TGASP |
TGASP emulator (in the paper this is done within an objective Bayesian implementation - OB emulator.) |
true_output |
Output from the simulator. |
ref_output |
Heuristic emulator output. |
Details
See examples which illustrate the use of the function.
Value
List of performance measures.
RMSPE_base |
Root mean square predictive error with respect to the heuristic emulator output. |
RMSPE |
Root mean square predictive error for the emulator output |
ratio |
ratio of RMSPE_base to RMSPE. Ratio = RMSPE_base/RMSPE |
CIs |
95% central credible intervals |
emp_cov |
95% empirical coverage within the CIs |
length_CIs |
Average lenght of 95% central credible intervals |
Author(s)
Ksenia N. Kyzyurova, ksenia.ucoz.net
References
Ksenia N. Kyzyurova, James O. Berger, and Robert L. Wolpert. Coupling computer models through linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification, 6(3): 1151-1171, 2018
Examples
## Function f1 is a simulator
f1<-function(x){sin(pi*x)}
## One-dimensional inputs are x1
x1 <- seq(-1,1,.37)
## The following contains the list of data inputs (training) and outputs (fD) together with
## the assumed fixed smoothness of a computer model output.
data.f1 <- list(training = x1,fD = f1(x1), smooth = 1.99)
## Evaluation of GASP parameters
f1_MLEs = eval_GASP_RFP(data.f1,list(function(x){x^0},function(x){x^1}),1,FALSE)
## Evaluate the emulator
xn = seq(-1,1,.01)
TGASP_f1 <- eval_TGASP(as.matrix(xn),f1_MLEs)
## Plot the emulator
par(mfrow = c(1,1))
par(mar = c(6.1, 6.1, 5.1, 2.1))
ylim = c(-1.5,1.5)
TGASP_plot(TGASP_f1,f1,data.f1,ylim = ylim)
## Measure the performance of the emulator
TGASPmetrics(TGASP_f1,f1(xn),mean(f1(xn)))