Linkage-package {Linkage} | R Documentation |
Clustering Communication Networks Using the Stochastic Topic Block Model Through Linkage.fr
Description
It allows to cluster communication networks using the Stochastic Topic Block Model <doi:10.1007/s11222-016-9713-7> by posting jobs through the API of the linkage.fr server, which implements the clustering method. The package also allows to visualize the clustering results returned by the server.
Details
The DESCRIPTION file:
Encoding: | UTF-8 |
Package: | Linkage |
Type: | Package |
Title: | Clustering Communication Networks Using the Stochastic Topic Block Model Through Linkage.fr |
Version: | 0.9 |
Depends: | R (>= 3.5.0) |
Imports: | httr, jsonlite, RColorBrewer, sna, network |
Date: | 2022-04-08 |
Author: | Charles Bouveyron, Pierre Latouche, Stéphane Petiot, Carlos Ocanto |
Maintainer: | Charles Bouveyron <charles.bouveyron@gmail.com> |
Description: | It allows to cluster communication networks using the Stochastic Topic Block Model <doi:10.1007/s11222-016-9713-7> by posting jobs through the API of the linkage.fr server, which implements the clustering method. The package also allows to visualize the clustering results returned by the server. |
License: | GPL-3 |
Index of help topics:
Enron The Enron email network Linkage-package Clustering Communication Networks Using the Stochastic Topic Block Model Through Linkage.fr linkage.check Monitor achievment of the current job linkage.getresults Retrieve results for a specific job. linkage.post Post a job on Linkage.fr to cluster a network with STBM plot.linkage The plot function for 'linkage' objects.
It allows to cluster communication networks using the Stochastic Topic Block Model (Bouveyron et al., 2018, <doi:10.1007/s11222-016-9713-7>) by posting jobs through the API of the linkage.fr server, which implements the clustering method. The package also allows to visualize the clustering results returned by the server.
Author(s)
Charles Bouveyron, Pierre Latouche, Stéphane Petiot, Carlos Ocanto
Maintainer: Charles Bouveyron <charles.bouveyron@gmail.com>
References
C. Bouveyron, P. Latouche and R. Zreik, The Stochastic Topic Block Model for the Clustering of Networks with Textual Edges, Statistics and Computing, vol. 28(1), pp. 11-31, 2017 <doi:10.1007/s11222-016-9713-7>
Examples
## Not run:
data(Enron)
write.table(Enron, file="Enron.csv",row.names=FALSE,col.names=FALSE, sep=",")
file = "Enron.csv"
# Provide the user token, which is provided on "developers" page
# of http://linkage.fr (after registration)
token = "xxxxxxxxxxxxxxxxxxxx"
# Post the job
job_id = linkage.post(file, token, job_title="My job: Enron",
clusters_min = 8, clusters_max = 8,
topics_min = 6,topics_max = 6,
filter_largest_subgraph = TRUE)
# Monitor achievment of the current job
ans = linkage.check(token)
# Retrieve results (once achievment is 100
res = linkage.getresults(job_id,token)
# Plot the results
plot(res,type='all')
## End(Not run)