LiblineaR {LiblineaR} | R Documentation |
Linear predictive models estimation based on the LIBLINEAR C/C++ Library.
Description
LiblineaR
allows the estimation of predictive linear models for
classification and regression, such as L1- or L2-regularized logistic
regression, L1- or L2-regularized L2-loss support vector classification,
L2-regularized L1-loss support vector classification and multi-class support
vector classification. It also supports L2-regularized support vector regression
(with L1- or L2-loss). The estimation of the models is particularly fast as
compared to other libraries. The implementation is based on the LIBLINEAR C/C++
library for machine learning.
Usage
LiblineaR(
data,
target,
type = 0,
cost = 1,
epsilon = 0.01,
svr_eps = NULL,
bias = 1,
wi = NULL,
cross = 0,
verbose = FALSE,
findC = FALSE,
useInitC = TRUE,
...
)
Arguments
data |
a nxp data matrix. Each row stands for an example (sample, point) and each column stands for a dimension (feature, variable). Sparse matrices of class matrix.csr, matrix.csc and matrix.coo from package SparseM are accepted. Sparse matrices of class dgCMatrix, dgRMatrix or dgTMatrix from package Matrix are also accepted. Note that C code at the core of LiblineaR package corresponds to a row-based sparse format. Hence, dgCMatrix, dgTMatrix, matrix.csc and matrix.csr inputs are first transformed into matrix.csr or dgRMatrix formats, which requires small extra computation time. |
target |
a response vector for prediction tasks with one value for
each of the n rows of |
type |
|
cost |
cost of constraints violation (default: 1). Rules the trade-off
between regularization and correct classification on |
epsilon |
set tolerance of termination criterion for optimization.
If
The meaning of
|
svr_eps |
set tolerance margin (epsilon) in regression loss function of SVR. Not used for classification methods. |
bias |
if bias > 0, instance |
wi |
a named vector of weights for the different classes, used for asymmetric class sizes. Not all factor levels have to be supplied (default weight: 1). All components have to be named according to the corresponding class label. Not used in regression mode. |
cross |
if an integer value k>0 is specified, a k-fold cross validation
on |
verbose |
if |
findC |
if |
useInitC |
if |
... |
for backwards compatibility, parameter |
Details
For details for the implementation of LIBLINEAR, see the README file of the original c/c++ LIBLINEAR library at https://www.csie.ntu.edu.tw/~cjlin/liblinear/.
Value
If cross
>0, the average accuracy (classification) or mean square error (regression) computed over cross
runs of cross-validation is returned.
Otherwise, an object of class "LiblineaR"
containing the fitted model is returned, including:
TypeDetail |
A string decsribing the type of model fitted, as determined by |
Type |
An integer corresponding to |
W |
A matrix with the model weights. If |
Bias |
The value of |
ClassNames |
A vector containing the class names. This entry is not returned in case of regression models. |
Note
Classification models usually perform better if each dimension of the data is first centered and scaled.
Author(s)
Thibault Helleputte thibault.helleputte@dnalytics.com and
Jerome Paul jerome.paul@dnalytics.com and Pierre Gramme.
Based on C/C++-code by Chih-Chung Chang and Chih-Jen Lin
References
-
For more information on LIBLINEAR itself, refer to:
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A Library for Large Linear Classification,
Journal of Machine Learning Research 9(2008), 1871-1874.
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
See Also
Examples
data(iris)
attach(iris)
x=iris[,1:4]
y=factor(iris[,5])
train=sample(1:dim(iris)[1],100)
xTrain=x[train,]
xTest=x[-train,]
yTrain=y[train]
yTest=y[-train]
# Center and scale data
s=scale(xTrain,center=TRUE,scale=TRUE)
# Find the best model with the best cost parameter via 10-fold cross-validations
tryTypes=c(1:6)
tryCosts=c(1000,0.001)
bestCost=NA
bestAcc=0
bestType=NA
for(ty in tryTypes){
for(co in tryCosts){
acc=LiblineaR(data=s,target=yTrain,type=ty,cost=co,bias=1,cross=5,verbose=FALSE)
cat("Results for C=",co," : ",acc," accuracy.\n",sep="")
if(acc>bestAcc){
bestCost=co
bestAcc=acc
bestType=ty
}
}
}
cat("Best model type is:",bestType,"\n")
cat("Best cost is:",bestCost,"\n")
cat("Best accuracy is:",bestAcc,"\n")
# Re-train best model with best cost value.
m=LiblineaR(data=s,target=yTrain,type=bestType,cost=bestCost,bias=1,verbose=FALSE)
# Scale the test data
s2=scale(xTest,attr(s,"scaled:center"),attr(s,"scaled:scale"))
# Make prediction
pr=FALSE
if(bestType==0 || bestType==7) pr=TRUE
p=predict(m,s2,proba=pr,decisionValues=TRUE)
# Display confusion matrix
res=table(p$predictions,yTest)
print(res)
# Compute Balanced Classification Rate
BCR=mean(c(res[1,1]/sum(res[,1]),res[2,2]/sum(res[,2]),res[3,3]/sum(res[,3])))
print(BCR)
#' #############################################
# Example of the use of a sparse matrix of class matrix.csr :
if(require(SparseM)){
# Sparsifying the iris dataset:
iS=apply(iris[,1:4],2,function(a){a[a<quantile(a,probs=c(0.25))]=0;return(a)})
irisSparse<-as.matrix.csr(iS)
# Applying a similar methodology as above:
xTrain=irisSparse[train,]
xTest=irisSparse[-train,]
# Re-train best model with best cost value.
m=LiblineaR(data=xTrain,target=yTrain,type=bestType,cost=bestCost,bias=1,verbose=FALSE)
# Make prediction
p=predict(m,xTest,proba=pr,decisionValues=TRUE)
}
#' #############################################
# Example of the use of a sparse matrix of class dgCMatrix :
if(require(Matrix)){
# Sparsifying the iris dataset:
iS=apply(iris[,1:4],2,function(a){a[a<quantile(a,probs=c(0.25))]=0;return(a)})
irisSparse<-as(iS,"sparseMatrix")
# Applying a similar methodology as above:
xTrain=irisSparse[train,]
xTest=irisSparse[-train,]
# Re-train best model with best cost value.
m=LiblineaR(data=xTrain,target=yTrain,type=bestType,cost=bestCost,bias=1,verbose=FALSE)
# Make prediction
p=predict(m,xTest,proba=pr,decisionValues=TRUE)
}
#############################################
# Try regression instead, to predict sepal length on the basis of sepal width and petal width:
xTrain=iris[c(1:25,51:75,101:125),2:3]
yTrain=iris[c(1:25,51:75,101:125),1]
xTest=iris[c(26:50,76:100,126:150),2:3]
yTest=iris[c(26:50,76:100,126:150),1]
# Center and scale data
s=scale(xTrain,center=TRUE,scale=TRUE)
# Estimate MSE in cross-vaidation on a train set
MSECross=LiblineaR(data = s, target = yTrain, type = 13, cross = 5, svr_eps=.01)
# Build the model
m=LiblineaR(data = s, target = yTrain, type = 13, cross=0, svr_eps=.01)
# Test it, after test data scaling:
s2=scale(xTest,attr(s,"scaled:center"),attr(s,"scaled:scale"))
pred=predict(m,s2)$predictions
MSETest=mean((yTest-pred)^2)
# Was MSE well estimated?
print(MSETest-MSECross)
# Distribution of errors
print(summary(yTest-pred))