plotPIP {LatentBMA} | R Documentation |
Visualization of Posterior Inclusion Probabilities
Description
plotPIP
produces a visualization of the posterior inclusion probabilities (PIPs) extracted from ULLGM_BMA
results.
Usage
plotPIP(x,
variable_names = NULL,
sort = TRUE)
Arguments
x |
The output object of |
variable_names |
A character vector specifying the names of the columns of X. |
sort |
Logical, indicating whether the plot should be sorted by PIP. Defaults to |
Value
Returns a 'ggplot2::ggplot' object.
Author(s)
Gregor Zens
Examples
# Load package
library(LatentBMA)
# Example: Estimate a PLN model under a BRIC prior with m = p/2 using simulated data
# Note: Use more samples for actual analysis
# Note: nsave = 250 and nburn = 250 are for demonstration purposes
X <- matrix(rnorm(100*20), 100, 20)
z <- 2 + X %*% c(0.5, -0.5, rep(0, 18)) + rnorm(100, 0, sqrt(0.25))
y <- rpois(100, exp(z))
results_pln <- ULLGM_BMA(X = X, y = y, model = "PLN", nsave = 250, nburn = 250)
plotPIP(results_pln)
[Package LatentBMA version 0.1.1 Index]