betanew_lasso_cpp {LassoNet} | R Documentation |
C++ subroutine that updates \beta
coefficients.
Description
This function updates \beta
for given penalty parameters.
Usage
betanew_lasso_cpp(xx, xy, beta, M, y, Lambda1, Lambda2, iter, tol)
Arguments
xx |
Bx matrix |
xy |
By vector |
beta |
initial value for |
M |
penalty matrix |
y |
response vector or size |
Lambda1 |
lasso penalty parameter |
Lambda2 |
network penalty parameter |
iter |
maximum number of iterations for |
tol |
convergence tolerance level |
Details
See beta.update.net
Value
beta |
updated |
steps |
number of steps until convergence |
Author(s)
Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>
References
Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>
Examples
p<-200
n<-100
beta.0=array(1,c(p,1))
x<-matrix(rnorm(n*p),n,p)
y<-rnorm(n,mean=0,sd=1)
lambda1<-1
lambda2<-1
M1<-diag(p)
updates<-beta.update.net(x, y, beta.0, lambda1, lambda2, M1)
[Package LassoNet version 0.8.3 Index]